Finite-Dimensional Hopf Algebras

SYuqiu Wei¹, Beishang Ren^{2Corresponding Author}

1. Guangxi University of Foreign Languages, Nanning 530222, Guangxi China

2. Software Engineering Institute of Guangzhou, Guangzhou 510990, Guangdong China

Abstract:

TThis paper mainly discussed various characterizations for the finite-dimensional Hopf algebras over algebraically closed field and has characteristic 0. And further showed that the order of antipode of the Hopf algebras is finite, but also provides a hint on how to estimate the order of the antipodes.

Keywords:

Finite-dimensional Hopf algebras; Order of the antipode ; Trace; Semisimple; Cosemisimple; Eigenvalue; Distinguished grouplike

Fund project:

Project supported by Research Program of Software Engineering Institute of Guangzhou(KY202110)

1 Introduction

Throughout this paper is a algebraically closed field and has characteristic0, is a finite -dimensional K - Hopf algebra with antipode which is a diagonalizable operator and C is a K – coalgebra. There is a convenient adaptation of the Heyneman–Sweedler^[1] singma notation for coalgebras and comodules as $\Delta(c) = \sum c_{(1)} \otimes c_{(2)}$ and $P(c) = \sum c_{(-1)} \otimes c_{(0)}$ $\forall c \in C$.

Definition1.1^[1]

A grouplike elements of *C* is a $c \in C$ which satisfies the following conditions: $\Delta(c) = c \otimes c$ and $\mathcal{E}(c) = 1$, the set of *C* grouplike elements of is denoted G(C).

We firstly recall the following actions as module structures:

- (1) H^* is a left H module via $(h \rightarrow h^*)(g) = h^*(gh)$ for $h, g \in H, h^* \in H^*$.
- (2) H^* is a rigt H module via for $h, g \in H, h^* \in H^*$.

(3) *H* is a left h H^* – module via $h^* \rightarrow h = \sum h^*(h_2)h_1$ for $h^* \in H^*, h \in H$.

(4) *H* is a right H^* – module via $h \leftarrow h^* = \sum h^*(h_1)h_2$ for $h^* \in H^*, h \in H$.

If $g \in H$ is a grouplike element as in Definition1.1, we can denote by

$$L_{g} = \{m \in H^{*} | h^{*}m = h^{*}(g)m \text{ for any } h^{*} \in H$$

and

$$R_{\sigma} = \{n \in H^* | nh^* = h^*(g)n \text{ for any } h^* \in H^*\}$$
 for any $h^* \in H^*\}$

which are ideals of H^* and $L_1 = \int_{I} R_1 = \int_{I} Also$ recall from^[1] that L_g and R_g are 1-dimensional, and there exists a grouplike element d such that $R_d = L_1$, where d is called the distinguished grouplike. We can perform the same constructions on the dual algebra H^* . More precisely,

*}

for any $\eta \in G(H^*) = A \lg(H, K)$ we can define

$$L_n = \{x \in H | hx = \eta(h)x \text{ for any } h \in H\}$$

$$R_n = \{ y \in H | yh = \eta(h)y \text{ for any } h \in H \}$$

We remark that if we keep the same definition we gave for L_g , then L_η should be a subspace of H^{**} . The set L_η , as defined above , is just the preimage of this subspace via the canonical Isomorphism $\theta: H \to H^{**}$. From the above it follows that the subspaces L_η and R_η are ideals

of dimension 1 in H, and there exists $\alpha \in G(H^*)$ such that $R_{\alpha} = L_{\varepsilon}$. This element α is the distinguished grouplike element in H^* .

Remark1.2^[1]

If H is semisimple and cosemisimple, then distinguished grouplike in H and H^* are equal to 1 and $\mathcal E$, respectively.

Lemma1.3[^{2]}

Suppose that H is a Hopf algebra over K. Then

(1) The only subspaces of H which are both a left ideal and left coideal of H are and H(2) If H contains a non-zero finite -dimensional left or right ideal. Then H is finite-

dimensional.

Lemma1.4^[3]

Let C be a finite-dimensional coalgebra over K. Then $U \mapsto U^{\perp}$ is a one-one inclusion reversing correspondence between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of C and the set of subalgebras (respectively ideals, left ideals, right ideals) of the dual algebra C^* .

Lemma1.5[^{3]}

If $C_n(K)$ is a simple coalgebra over K for all $n \ge 1$. Then any simple coalgebra over K is isomorphic to $C_n(K)$ for some $n \ge 1$.

Lemma1.6^[4]

Suppose U and V be vector spaces over K and $F: V^* \to U^*$ is the transpose of a linear map $f: U \to V$. If J and I are subspaces of V^* and U^* respectively. Then $F(J) \subset I$ implies $f(I^{\perp}) \subseteq J^{\perp}$.

Remark1.7^[4]

For a subspace V of U let $res_V^U : U^* \to V^*$ be the restriction map which is thus defined by $res_V^U(u^*) = u^* | V$ for all $u^* \in U^*$. Notice that $Ker(res_V^U) = V^{\perp}$. Hence $U^*/V^{\perp} \cong V^*$ as vector spaces. Therefore we have the formula $Dim(U^*/V^{\perp}) = Dim(V^*)$. In particular V^{\perp} is a cofinite subspace of U^* if and only if V is a finite-dimensional subspace of U. Also notice that $res_V^U = i^*$, where $i : V \to U$ is the inclusion map.

Definition1.8^[4]

For $a \in H$, $a^* \in H^*$, $b \in H$, define endomorphisms $L(a^*)$ and $R(a^*)$ in End(H) by End(H) by $L(a^*)(b) = a^* \rightarrow b$ and $R(a^*)(b) = b \leftarrow a^*$, on the other hand, l(a) and r(a) in End(H) by l(a)(b) = ab and r(a)(b) = ba.

Proposition 1.9^[5]

Suppose that *S* is the antipode of *H*. Let Λ be a left integral for *H* and ω be a right integral for H^* which satisfy $< \Lambda, \omega >= 1$. Then

(1) $Tr(r(a) \circ S^2 \circ R(a^*)) = \langle \omega, a \rangle \langle a^*, \Lambda \rangle$ for all $a \in H$, $a^* \in H^*$.

(2) The functional $\omega_r \in H^*$ defined by $\omega_r(a) = Tr(r(a) \circ S^2)$ for all $a \in H$ is a right integral for H^* .

Proposition 1.10^[5]

Suppose that S is the antipode of H. Then the following are equivalent:

(1) H and H^* are semisimple.

(2) $Tr(S^2) \neq 0$.

Proposition 1.11^[5]

Suppose that S is the antipode of H.

(1) Let g and α be the distinguished grouplike elements for H and H^* respectively. Then $S^4 = \tau_g \circ (\tau_{\alpha^{-1}})^*$ or equivalently, $S^4(a) = g(\alpha \rightarrow a \leftarrow \alpha^{-1})g^{-1}$, for all $a \in H$.

(2) If H and H^* are unimodular, in particular if H and H^* are semisimple, then $S^4 = 1_{H^*}$.

(3) $Tr(S^2) = (Dim(H))Tr(S^2|_{x_{\mu}}H)$.

Theorem 1.12^[6]

Let H be a Hopf algebra over K. Then the following are equivalent:

(1) All left H – comodules are completely reducible.

(2) $< \lambda, 1 > \neq 0$ for some $\lambda \in \int^r ..$ (3) $H = K1 \otimes C$ for some subcoalgebra *C* of *H*. (4) $< \lambda, 1 > \neq 0$ for some $\lambda \in \int^l$ (5) All right H – comodules are completely reducible.

Theorem 1.13^[6]

Let *H* be a cosemisimple Hopf algebra with antipode *S*. Then $S^2(C) = C$ for all simple subcoalgebras *C* of *H*.

2 The order of the antipode

Lemma 2.1

Suppose $\eta \in G(H^*)$, $g \in G(H)$, $m, n \in H^*$ and $x \in L_\eta$ and $x \in L_\eta$ such that $m \to x = x \leftarrow n$. Then $m \in L_g$ and $n \in R_g$. Proof Let $h^*, g^* \in H^*$. Then

$$(g^*h^*m)(x) = \sum (g^*h^*)(x_1m(x_2))$$

= $(g^*h^*)(g)$
= $g^*(g)h^*(g)$
= $\sum g^*(m(x_2)x_1)h^*(g)$
= $(g^*h^*(g)m)(x)$

which shows that $(g^*(h^*m - h^*(g)m))(x) = 0$, so $(h^*m - h^*(g)m)(x \leftarrow H^*)$. But $x \leftarrow H^* = H$, since $L_\eta \leftarrow \eta = L_\varepsilon$ and $L_\varepsilon \leftarrow H^* = H$ (applied for the dual of H^{op}). This shows that $h^*m = h^*(g)m$, and so $m \in L_g$. The fact that $n \in R_g$ is proved in a similar way.

Corollary 2.2

If $m \in H^*$, $x \in L_{\varepsilon}$, and $m \to x = 1$, then $m \in L_1$ and $x \leftarrow m = d$. **Proof** If $h^* \in H^*$, then $h^*(x \leftarrow m) = \sum h^*(x_2)m(x_1)$

$$= (mh^*)(x)$$
$$= h(d)m(x)$$
$$h^*(m(x)d)$$

Applying to the relation $\sum m(x_2)x_1 = 1$ we get m(x) = 1. This shows that $x \leftarrow m = d$. The fact that $m \in L_1$ is proved by Lemma 2.1.

Lemma 2.3

Suppose $x \in L_{\eta}$, $g \in G(H)$, $m \in H^*$ such that $m \to x = g$. Then for any $h^* \in H^*$ we have $\eta(g)h^*(1) = \sum h^*(x_1)m(gx_2)$. **Proof** From the fact that $\Delta(h^*) = \sum h^*_1 \otimes h^*_2$, $g = m \to x$ and $\eta(g)x = gx$, we have, we have

$$\begin{split} \eta(g)h^*(1) &= \sum \eta(g)h_1^*(g^{-1})h_2^*(g) \\ &= h_1^*(g^{-1})h_2^*(m(x_2)x_1\eta(g)) \\ &= h_1^*(g^{-1})h_2^*(m(gx_2)gx_1) \\ &= \sum h^*(g^{-1}gx_1)m(gx_2) \\ &= \sum h^*(x_1)m(gx_2) \end{split}$$

Lemma 2.4

Let Let $x \in L_{\eta}$, $g \in G(H)$, $m \in H^*$, and $\eta \in G(H^*)$ such that $m \to x = g$. Then for any $h \in H$ we have $S(g^{-1}(\eta \to h) = (m \leftarrow h) \to x$.

Proof If $h^* \in H^*$. Then

 $h^*(S(g^{-1}(\eta \to h))) = \sum h^*(S(h_1)g)\eta(h_2)$

- $= \sum \eta(g) h^*(S(h_1)g) \eta(g^{-1}h_2)$
- $=\eta(g)((h^*S)\eta)(g^{-1}h)$
- $= \sum ((h_1^*S)\eta)(g^{-1}h)\eta(g)h_2^*(1)$
- $= \sum ((h_1^*S)\eta)(g^{-1}h)h_2^*(m(gx_2)x_1)$
- $= \sum (h_1^* S)(g^{-1}h_1)\eta(g^{-1}h_2)h_2^*(m(gx_2)x_1)$
- $=\sum h_1^*(S(h_1)g)h_2^*(m(gg^{-1}h_3x_2)g^{-1}h_2x_1)$
- $= \sum h_1^* (S(h_1)gg^{-1}h_2x_1m(h_3x_2))$
- $=\sum h^*(x_1m(hx_2))$
- $= h^*((m \leftarrow h) \rightarrow x).$

Remark 2.5

If we write the formula from Lemma2.4 for the Hopf algebras $H, H^{cop}, H^{op, cop}$ and H^{op} , we get that for any $h \in H$ the following relations hold:

Suppose $x \in L_{\eta}, m \to x = g$, then $S(g^{-1}(\eta \to h)) = (m \leftarrow h) \to x$; Suppose $x \in R_{\eta}, m \to x = g$, then $S^{-1}((\eta \to h)g^{-1}) = (h \to m) \to x$; Suppose $x \in R_{\eta}, x \leftarrow n = g$, then $S((h \leftarrow \eta)g^{-1}) = x \leftarrow (h \to n)$; Suppose $x \in L_{\eta}, x \leftarrow n = g$, then $S^{-1}(g^{-1}(h \leftarrow \eta)) = x \leftarrow (n \leftarrow h)$. In particular

If
$$x \in L_{\varepsilon}, m \to x = 1$$
, then $S(h) = (m \leftarrow h) \to x$ (2.1)
If $x \in R_{\alpha} = L_{\varepsilon}, m \to x = 1$, then $S^{-1}(\alpha \to h) = (h \to m) \to x$ (2.2)
If $x \in R_{\alpha} = L_{\varepsilon}, x \leftarrow n = d$, then $S((h \leftarrow \alpha)d^{-1}) = x \leftarrow (h \to n)$ (2.3)
If $x \in L_{\varepsilon}, x \leftarrow n = g$, then $S^{-1}(g^{-1}h) = x \leftarrow (n \leftarrow h)$ (2.4)

Theorem 2.6

For any $h \in H$ we have $S^4(h) = d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d$.

Proof Suppose $x \in L_{\varepsilon} = R_{\alpha}$, and $m \in H^*$ with $m \to x = 1$. Corollary 2.2 shows that $m \in L_1$ and $m \in L_1$ and $x \leftarrow m = d$. Moreover, we have

$$(S^{4}(h) \rightarrow m) \rightarrow x = S^{-1}(\alpha \rightarrow S^{4}(h)) \quad (by (2.2))$$
$$= S^{-1}(S^{4}(\alpha \rightarrow h))$$
$$= S(S^{2}(\alpha \rightarrow h))$$
$$= S(S^{2}(\alpha \rightarrow h)) \quad (by (2.1))$$

Since the map from H^* to H, sending $h^* \in H^*$ to $h^* \to x \in H$ is bijective, we obtain $S^4(h) \to m = m \leftarrow S^2(\alpha \to h)$

On the other hand,

 $\begin{aligned} x \leftarrow (m \leftarrow S^2(\alpha \rightarrow h) = S^{-1}(d^{-1}S^2(\alpha \rightarrow h) \text{ (by (2.4))} \\ = S^{-1}(S^2(d^{-1}(\alpha \rightarrow h))) \\ = S(d^{-1}(\alpha \rightarrow h) \\ = S(d^{-1}(\alpha \rightarrow h)d^{-1}) \\ = S(((d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \leftarrow \alpha)d^{-1}) \\ = x \leftarrow (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m)^{\text{(by (2.3))}} \\ \text{Since the map } h^* \mapsto (x \leftarrow h^*) \text{ from } H^* \text{ to } H \text{ is bijective, we obtain that} \\ m \leftarrow S^2(\alpha \rightarrow h) = (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m \\ \text{We got that} \end{aligned}$

 $S^4(h) \rightarrow m = (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m$

then the formula follows from the bijectivity of the map $h \mapsto (h \to m)$ from H to H^* .

Theorem 2.7

Let H be a finite dimensional Hopf algebra. Then the antipode S has finite order. **Proof** By Theorem 2.6, we obtain by induction that

 $S^{4n}(h) = d^{-n}(\alpha^n \to h \leftarrow \alpha^{-n})d^n$ for any positive integer *n*. Since G(H) and $G(H^*)$ are finite groups, their elements have finite orders, so there exists *p* for which $d^p = 1$ and $\alpha^p = \varepsilon$. Then it follows that $S^{4p} = I$.

3 Characterizations of semisimple Hopf algebras

Semisimlpe Hopf algebras are finite-dimsnsional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.

Lemma3.1

If C is a simple coalgebra over K, and T is a diagonalizable coalgebra automorphism of C. The

 $Tr(T) = (\sum_{i=1}^{n} \lambda_i) (\sum_{i=1}^{n} \lambda_i^{-1})$

where $\lambda_1, \lambda_2, \cdots, \lambda_n$ are eigenvalues for T .

Proof By lemma 1.5 we obtain that $C \cong C_n(K)$ for some $n \ge 1$. Thus we may assume $C = C_n(K)$. The crux of the proof will be to show that there is a simple left coideal M of C such that $T(M) \subseteq M$. Necessarily Dim(M) = n.

 T^* is an algebra automorphism of $C^* = M_n(K)$. By Skolem-Noether Theorem, there is an invertible matrix $u \in M_n(K)$ such that $T^*(a) = uau^{-1}$ for all $a \in M_n(K)$. Identify $C^* = M_n(K)$ with End(V), where V is n – an dimensional vector space over K. Since K is algebraically closed, u has an eigenvalue $\lambda \in K$. Let $v \in V$ be a non-zero vector satisfying $u(V) = \lambda v$. Regard End(V)and V as left End(V) – modules via function composition and evaluation respectively. Then V is a simple module and the evaluation map

 $e_v: End(V) \rightarrow V$ given by $e_v(a) = a(v)$ for all $a \in End(V)$

is a module map. Therefore $L = Ker(e_v) = \{a \in End(V) | a(v) = 0\}$ is a maximal left ideal of End(V) of codimension $n^2 - n$. Observe that $T^*(L) \subseteq L$. Set $M = L^{\perp}$. Then M is a minimal left coideal of C by Lemma 1.4 and $T(M) \subseteq M$ by Lemma 1.6. and Using Remark1.7 we see that Dim(M) = n.

Since *T* is diagonalizable and $T(M) \subseteq M$ it follows that the restriction T|M is diagonalizable. Let be a basis of eigenvectors for and let $\lambda_1, \dots, \lambda_n \in K$ satisfy $T(m_i) = \lambda_i m_i$ for all $1 \le i \le n$. Then $\lambda_1, \dots, \lambda_n$ are non-zer scalars since is noe-one. For each $1 \le i \le n$ write $\Delta(m_i) = \sum_{j=1}^n c_{i,j} \otimes m_j$. Then the $C_{i,j}$'s satisfy the comatrix identities and thus span a non-zero subcoalgebra *D* of *C*. Since *C* is simple D = C. Since $Dim(C) = n^2$ necessarily the $C_{i,j}$'s from a basis for *C*. Applying $T \otimes T$ to both sides of the equation for $\Delta(m_i)$ yields $\sum_{j=1}^n \lambda_i c_{i,j} \otimes m_j = \sum_{j=1}^n T(c_{i,j}) \otimes \lambda_j m_j$. Therefore $T(c_{i,j}) = \lambda_i \lambda_j^{-1} c_{i,j}$ for all $1 \le i, j \le n$. Since $\{c_{i,j}\}_{1 \le i, j \le n}$ is a basis for *C* we calculat

$$Tr(T) = \sum_{i,j=1}^{n} \lambda_i \lambda_j^{-1} = (\sum_{i=1}^{n} \lambda_i) (\sum_{i=1}^{n} \lambda_i^{-1}).$$

Theorem 3.2

Let H be a Hopf algebra with antipode S over K. Then the following are equivalent.

(1) H is cosemisimple.

 $(2) Tr(S^2) \neq 0.$

(3) H is semisimple.

 $(4) S^2 = 1_{\mu}.$

(5) $\omega: H \to K$ defined by $\omega(a) = Tr(r(a))$ for all $a \in H$ is a right integral for H.

Proof (1) \Rightarrow (2). Since *H* is cosemisimple it is the direct sum of its simple subcoalgebras. Let *C* be a simple subcoalgebra of *H*. Then S(C) = C By Theorem1.13. Now S^2 has finite order by part (1) of Theorem Proposition1.11. Since *K* is algebraically closed of characteristic zero S^2 is diagonalizable. Thus $Tr(S^2) = (\sum_{i=1}^n \lambda_i) (\sum_{i=1}^n \lambda_i^{-1})$ where $\lambda_1, \dots, \lambda_n$ are roots of unity by Lemma 3.1. Since the characteristic of *K* is zero we may assume that $\lambda_1, \dots, \lambda_n \in C$, the field of compex mubers. Thus $Tr(S^2|C) = (\sum_{i=1}^n \lambda_i) (\sum_{i=1$

is a non-negative real number. Therefor $Tr(S^2) = 1 + \sum_{C} Tr(S^2|C) \ge 1$, where C runs over the simple subcoalgebras $C \neq K1$ of H. We

have shown that $Tr(S^2) \neq 0$.

 $(2) \Longrightarrow (3)$. It is pretty obvious by Proposition1.10.

(3) \Rightarrow (4). Assume that H is semisimple. Then H^* is cosemisimple. We have just show H^* is semisimple; thus H is semisimple and cosemisimple. In particular $Tr(S^2) \neq 0$. Now $Tr(S^2) = (Dim(H))Tr(S^2|_{x_H}H)$ by part (3) of Proposition 1.11 and $S^4 = 1_H$ by part (2) of Porposition 1.11. Since the characteristic of K is not 2, the last equation implies S^2 is a diagonalizable endomorphism of H with eigenvalues ± 1 . Choose a basis of eigenvectors for S^2 . Let n_+ be the number of basis vectors belonging to the eigenvalue 1 and let n_- be the number belonging to -1. By the preceding trace formula $n_+ - n_- = (n_+ + n_-)m$ for some integer m which is not zero since $Tr(S^2) \neq 0$. Squaring both sides of this equation yields $-2n_+n_- = (m^2 - 1)n_+^2 + 2m^2n_+n_- + (m^2 - 1)n_-^2 \ge 0$. Therefore $n_+n_- = 0$. Since $n_+ \neq 0$ necessarily $n_- = 0$. We have shown $S^2 = 1_H$

 $(4) \Longrightarrow (5)$. That it is very simple follows by part (2) of Proposition 1.9.

(5) \Rightarrow (1). Since $\omega(1) = Dim(H) 1 \neq 0$, thus our proof is complete by Theorem1.12.

References:

[1] Sweedle M E. Hopf Algebra[M].New York Benamin; 1969.

[2] Etingof, P. and Gelaki, S. On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic[J], Internat. Math. Res. Notices 1988.

[3] Radford D.E., The Structure of Hopf Algebras with a Projection[J], J.Algebra, 1985.

[4] Abe, E. Hopf Algebra [M]. Cambridge Tracts in Mathematics 74, Cambridge University Press, Cambridge-New York; 1980.

[5] Montgomery S., Hopf Algebras and Their Actions on Rings[M], CBMS Reginal Conference Series in Math, 82, Amer. Math. Soc., Porvidence, 1993.

[6] Radford D.E., On the antipode of a cosemisimple Hopf algebra[J], J. Algebra, 1985.

About the Author:

Yuqiu Wei (1981-), female, associate professor; master tutor; research direction: mathematics teaching theory.

Corresponding author:

Beishang Ren (1956-), male, Professor; master tutor; research direction: ring and module theory and Hopf algebra.