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Abstract:

TThis paper mainly discussed various characterizations for the finite-dimensional Hopf algebras over algebraically closed field and
has characteristic 0. And further showed that the order of antipode of the Hopf algebras is finite, but also provides a hint on how to estimate
the order of the antipodes.
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1 Introduction

Throughout this paper is a algebraically closed field and has characteristicO, is a finite -dimensional K — Hopf algebra
with antipode which is a diagonalizable operator and Cis a K — coalgebra . There is a convenient adaptation of the Heyneman—
Sweedlerl'l singma notation for coalgebras and comodules as ) =Y ¢, ®c, and A(e) = ¢, ®cq, YeeC

Definition1.1[1]

A grouplike elements of Cis a ¢ € C which satisfies the following conditions: A(c)=c®c and &(c) =1, the set of C
grouplike elements of is denoted G(C) .

We firstly recall the following actions as module structures:

(1) H'is aleft H — module via (h — h")(g)=h'(gh)for h,g e H,h" e H".

(2) H'is arigt /f — module via for i, g € H,h" € H".

(3) Hisalefth H" — module via " —>h=> h"(h)hfor " e H ,he H.

(4) H is aright H* — module via i < " =3 1" (h)h, for > e H" ,he H.

If g € H is a grouplike element as in Definition1.1, we can denote by

L,={meH \h'm=h"(g)mforany h" € H"}

and
R,={ne H*‘nh* =h'(g)nforanyh" € H"}forany h* e H"}

which are ideals of  ‘andZ, = [ R, = [.Also recall from("] that L, and R, are 1-dimensional,and there exists a grouplike
element ¢ such that R, =L,, where d is called the distinguished grouplike. We can perform the same constructions on the dual
algebra H*. More precisely,

foranyn e G(H") = Alg(H, K)we can define

L= {er|hx:77(h)xfor anyh € H}
R, ={yeH|yh=n(h)yforanyh € H} .

We remark that if we keep the same definition we gave for L, then L” should be a subspace of H* .The set L,,, as
defined above ,is just the preimage of this subspace via the canonical Isomorphism §: H — H* From the above it follows that
the subspaces Lﬂ and R,7 are ideals

of dimension 1in H, and there exists @ € G(H ") such that R, = L,. This element ¢ is the

distinguished grouplike element in H~.



Finite-Dimensional Hopf Algebras

Remark1.2[1]

If H is semisimple and cosemisimple, then distinguished grouplike in A and H"areequalto ] and €, respectively.
Lemma1.3[2]

Suppose that H is a Hopf algebra over K . Then

(1) The only subspaces of H which are both a left ideal and left coideal of H are and H
(2) If H contains a non-zero finite -dimensional left or right ideal. Then H is finite-
dimensional.

Lemma1.4[3]

Let C be a finite-dimensional coalgebra over K. Then U U* is a one-one inclusion reversing correspondence
between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of C and the set of subalgebras (respectively
ideals, left ideals, right ideals) of the dual algebra C".

Lemma1.5[3]

If C,(K) is a simple coalgebra over K for all n>1.Then any simple coalgebra over K is isomorphic to C, (K) for
somen >1.

Lemma1.6[4

Suppose Uand }J/ be vector spaces over K and F: V" — U™ is the transpose of a linear map f:U — V. If J and [ are
subspaces of [/ and U " respectively. Then F(J) < [ impliesf([i) cJh

Remark1.74
V

for all u” e U". Notice that Ker(resf,/) =V". Hence U"‘/VL ~ J/* as vector spaces. Therefore we have the formula

For a subspace Jof U let resI[,j :U" = V" be the restriction map which is thus defined by resf,/(u*)zu*

Dim(U* /V*)=Dim(V*). In particular J/* is a cofinite subspace of U* if and only if J/ is a finite-dimensional subspace of [/, Also
notice that resg =i", where i : V' — U is the inclusion map.

Definition1.8[

Forae H, a* € H*,b e H, define endomorphisms L(a") and R(a") in End(H) by End(H) by L(a")b)=a" —b
and R(a")(b)=b <« a", on the other hand, /(a) and 7(a) in End(H) byl(a)(b)=ab and r(a)(b)=ba .

Proposition 1.915]

Suppose that S is the antipode of H. Let A be a left integral for H and @ be a right integral for H* which satisfy
<A,o>=1. Then

(1) Tr(r(a)eS* o R(a")) =<w,a><a",A>foralac H, a" € H".

(2) The functional @, € H" defined by w,(a)=Tr(r(a)oS*) for all a € H is a right integral for H".

Proposition 1.10[%!

Suppose that S is the antipode of H. Then the following are equivalent:
(1) H and H " are semisimple.

(2) Tr(S*) = 0.

Proposition 1.1115]

Suppose that S is the antipode of H.

(1) Let & and « be the distinguished grouplike elements for H and H™ respectively. Then S* =7, <>(ra,1 )* or
equivalently, S*(a)=g(a 5 a<«a™)g™ ,foralla e H .

(2) If H and [ * are unimodular , in particular if  and H " are semisimple, then S* = 1,

() Tr(S?) = (Dim(H))Tr(S> o H) -

Theorem 1.12I16]

Let H be a Hopf algebra over K. Then the following are equivalent:
(1) All left H — comodules are completely reducible.
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2) <Al>#0 forsome je|"..
3) H = K1® C for some subcoalgebra C of H .
)

(

(

(4) < A,1 ># Ofor some 4 € I !

(5) All right /f — comodules are completely reducible.

Theorem 1.13I€]

Let /[ be a cosemisimple Hopf algebra with antipode S'. Then SZ(C) = (C for all simple subcoalgebras C of H.
2 The order of the antipode

Lemma 2.1

Suppose n€G(H"), g€ G(H), m,ne H"and xe L, and X € L,] suchthatm — x =X < n.Thenm e Lg and n € Rg.
Proof Leth",g" € H".Then
(& h'm)(x) =D (g"h oxm(x,))
=(g"n")(g)
=g (&h'(g)
=28 (m(x)x)h (2)
=(g"h" (g)m)(x)

which shows that(g"(hF'm—h"(g)m))(x)=0,s0 (K'm—h'(g)m)(x« H') .Butx < H' =H, sinceL, <~ =L, and

L «H =H (applied for the dual of gyer ). This shows that %, — h*(g)m, and so y; e Lg- The fact that 5 Rg is proved in a

similar way.

Corollary 2.2

lfmeH ,xeL,,andm —>Xx=1,thenme L and x <—m=d.
Proof If 1" € H", then

B (x «=m) =" (x,)m(x,)
=(mh’)(x)
= h(d)m(x)
i (m(x)d)

Applying to the relation Y m(x,)x, =1 we get m(x)=1. This shows that x <~ m=d. The fact that m € L, is proved by

Lemma 2.1.

Lemma 2.3

g€G(H), me H suchthatm — X = g.Then for any}," ¢ H*we have n(g)h" (1)=> 1" (x,)m(gx,).
Proof From the factthat A(x")=> ' ®h;, g =m —> xand 7(g)x = gx,we have we have

Supposex e L,,
@' (D)= k(g i (e)
=k (g7 (m(x,)x7(g))
=k (g7 (m(gx,)gx)
=D k(g g )m(gx,)
=D H ()m(gx,)
Lemma 2.4

Letlet xel, geG(H), meH' ,and ne€G(H") such thatm—>x=g. Then for anyjheH we

haveS(g™'(n > h) =(m«h)—>x .

Proof If 4" cH". Then



B (S(g™ (7 = b)) =D h (S(h)gh(h,)

Remark 2.5

If we write the formula from Lemma2.4 for the Hopf algebras {7, 77 H°P*°" and H°?, we get that for any , ¢ H the

following relations hold:

=> () (S(h)gm(g ')
=n()(nSHm)g'h)

= Symg mn()h; (1)

= ((h Syn)(g Ayl (m(gx,)x,)

=D (B S)& ™ hn(g ) (m(gx,)x)
=2 1 (SUn) @k (m(gg ™ hyx;)g ™ o)
=2 h (S(h)gg ™ hyxym(hyx,))

="K (xym(hxy))

=h"(m<h)—>x)

Suppose xelL,,m—>x=g, then S(g'm—>h)=(m<h)—>x;

Suppose xeR,m—>x=g, then S (n>h)g)=(h—>m)—>x;

Suppose xeR, ,x<n=g, then S((h<ngH=x<h—n);

Suppose xcL,x<n=g, then S (g7 (h<n)=x<(n< h).

In particular

If xeL ,m—>x=1, then
If xeR, =L, ,m—>x=1,
If xeR, =L ,x<n=d,

If xel,,x<—n=g, then

Theorem 2.6

S(hy=(m<«h)—>x (2.1)
then S (a@a—>h)y=(h—>m)—>x (2.2)
then S((h<a)d)=x(h—>n) (2.

SN g 'h)=x<«(n<h) (2

Forany h e H we have S*(h)=d (@ > h«a™")d .

Proof Supposexe L, =R, ,andm e H withm — x=1. Corollary 2.2 shows that me L, and me L, and x < m=d .

Moreover, we have

S D) —>m—>x=S"(a—>S'(h) (by(2.2)

=S'(S*(a—h))
=S(S*(a = h))
=S(S* (o = h))

(by (2.1))
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Since the map fromH “to H, sending,* ¢ H*toh" — x € His bijective, we obtain S*(h) = m =m « S* (o = h)

On the other hand,

x—(me«S*(a—h) =5"'(d'S*(a — 1) (by (2.4))

=S58 d " (a = h))
=S(d ™ (a—>h)
=Sd (a—>hd ™)

=S((d (@ > had)«a)d™)

—x(d (@ heayd)—sm)'

by (2.3))

Since the map 4" - (x <~ #") from H" to H is bijective, we obtain that

me«S(a->h=d "' (a>h—a)d)—>m

We got that
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S'hy->m=d (@a—>h<a)d)—>m

then the formula follows from the bijectivity of the map /4 — (h — m)from Hto H".

Theorem 2.7

Let frbea finite dimensional Hopf algebra. Then the antipode S has finite order.

Proof By Theorem 2.6, we obtain by induction that

S*(hy=d"(a" — h < a™")d"for any positive integer 1. Since G(H ) and G(H ") are finite groups, their elements have
finite orders, so there exists P for whichd” =1and @’ = &.Then it follows that S*” = I.

3 Characterizations of semisimple Hopf algebras

Semisimlpe Hopf algebras are finite-dimsnsional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf

algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.
Lemmas3.1

If Cis a simple coalgebra over K, and T is a diagonalizable coalgebra automorphism of C'. The
T =Q AWQ A

where 4,,4,,---,4, are eigenvalues forT .

Proof By lemma1.5 we obtain thatC = C,(K)for somen >1. Thus we may assumeC =C,(K). The crux of the proof will
be to show that there is a simple left coideal M of C such that T(M) < M. Necesarily Dim(M) = n.

T"is an algebra automorphism of C* =M, (K). By Skolem-Noether Theorem, there is an invertible matrix u e M, (K)
such that 7" (a) = uau™'for all a€ M,(K). Identify C* = M, (K) with End (V) ,where J/ is n — an dimensional vector space over K.
Since K is algebraically closed, # has an eigenvalue 1 € K.Letv € V' be a non-zero vector satisfyingu(V) = Av.Regard End (V)
and [/ as left End()') — modules via function composition and evaluation respectively. Then V is a simple module and the
evaluation map

e,: End(V)—V givenbye, (a) =a(v)foralla e End(V)

is a module map. Therefore L = Ker(e,) ={a € End(V)‘a(v) =0} is a maximal left ideal of End (V) of codimension n® —n.
Observe thatT*(L) c L.Set M = L".Then M is a minimal left coideal of C by Lemma 1.4 andT(M) — M by Lemma 1.6. and
Using Remark1.7 we see that Dim(M) = n.

Since T is diagonalizable and 7(M) < M it follows that the restriction T‘M is diagonalizable. Let be a basis of eigenvectors
for and Ietﬂw..-,ﬂn eKsatisfyT(ml_) :/1,.m,.f0r all 1<i<n. Then ﬂ,l,m,ﬂ,n are non-zer scalars since is noe-one. For
each] << nwriteA(m,) = ZI,IZ,‘%,/ ®m . Then the Ci’j 's satisfy the comatrix identities and thus span a non-zero subcoalgebra D
of C Since C'is simple D = C.Since Dim(C) = n” necessarily the C; ;'s from a basis for C'. Applying T ® T to both sides of the

n

equation for A(m,) yields 3 4c,®m, =37 T(c,,)®2m, Therefore T(c, ;)= AA)'c, for alll <i, j < n.Since {c,

t,j}ls[,an is a basis

for C we calculat
I =3 AL =0 A A

Theorem 3.2

Let H be a Hopf algebra with antipode S over K . Then the following are equivalent.

(1) H is cosemisimple.

(2)Tr(S*) #0.

(3) H is semisimple.

@8> =1,.

(5) w: H — K defined by w(a) = Tr(r(a)) for alla € H is a right integral for /1.

Proof (1)=>(2). Since H is cosemisimple it is the direct sum of its simple subcoalgebras . Let C be a simple
subcoalgebra of H . Then S(C) = C By Theorem1.13 . Now §? has finite order by part (1) of Theorem Proposition1.11. Since K
is algebraically closed of characteristic zero S?is diagonalizable. Thus Tr(SZ):(Z;Lli,)(z:':]ﬁ.;')whereﬂ.l,---,ﬂn are roots of unity
by Lemma 3.1. Since the characteristic of K is zero we may assume that/?1,- . ﬂn € C, the field of compex mubers. Thus

1710 =(3 AN AN = AN A =[S A

is @ non-negative real number. Thereforr(s*)=1+Y 7+(s?c)=1,ewhere C runs over the simple subcoalgebras C = K10f H . We

101
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have shown that 7r(S*)=0. .

(2)=>(3). It is pretty obvious by Proposition1.10.

(3)=>(4). Assume that }{ is semisimple. Then H " is cosemisimple. We have just show H " is semisimple; thus H
is semisimple and cosemisimple. In particular Tr(S*) # 0. Now Tr(S?) = (Dim(H))Tr(S> ., H) by part (3) of Proposition
1.11 and S* =1, by part (2) of Porposition1.11. Since the characteristic of K is not 2, the last equation implies S?
is a diagonalizable endomorphism of A with eigenvalues +1. Choose a basis of eigenvectors for S . Let n, be the
number of basis vectors belonging to the eigenvalue 1 and let7_ be the number belonging to -1. By the preceding trace
formulan, —n_ = (n+ +n_)m for some integer m which is not zero since Tr(Sz) # (0. Squaring both sides of this equation

yields —2n n_=(m’ =)} +2m’n,n_+(m’ —1)n”> > 0. Therefore n,n_ = 0. Since n, # 0 necessarily n_=(. We have
shown §2 =1

H.

(4)=>(5). That it is very simple follows by part (2) of Proposition1.9.
(5)=>(1). Since w(1) = Dim(H)1 # 0, thus our proof is complete by Theorem1.12.
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