Finite-Dimensional Hopf Algebras

SYuqiu Wei1 , Beishang Ren2Corresponding Author

1. Guangxi University of Foreign Languages, Nanning 530222, Guangxi China

2. Software Engineering Institute of Guangzhou, Guangzhou 510990 , Guangdong China

Abstract:

TThis paper mainly discussed various characterizations for the finite-dimensional Hopf algebras over algebraically closed field and has characteristic 0. And further showed that the order of antipode of the Hopf algebras is finite, but also provides a hint on how to estimate the order of the antipodes.

Keywords:

Finite-dimensional Hopf algebras; Order of the antipode ; Trace; Semisimple; Cosemisimple; Eigenvalue; Distinguished grouplike

Fund project:

Project supported by Research Program of Software Engineering Institute of Guangzhou(KY202110)

1 Introduction

Throughout this paper is a algebraically closed field and has characteristic0, is a finite -dimensional *K* − *Hopf* algebra with antipode which is a diagonalizable operator and *C*is a *K* − coalgebra . There is a convenient adaptation of the Heyneman– Sweedler^[1] singma notation for coalgebras and comodules as $\Delta(c) = \sum c_{(i)} \otimes c_{(2)}$ and $\rho(c) = \sum c_{(-i)} \otimes c_{(0)} \quad \forall c \in C$.

Definition1.1[1]

A grouplike elements of *C* is a $c \in C$ which satisfies the following conditions: $\Delta(c) = c \otimes c$ and $\varepsilon(c) = 1$, the set of *C* grouplike elements of is denoted*G*(*C*) .

We firstly recall the following actions as module structures:

- (1) H^* is a left H module via $(h \to h^*)(g) = h^*(gh)$ for $h, g \in H, h^* \in H^*$.
- (2) H^* is a rigt H module via for $h, g \in H, h^* \in H^*$.

(3) *H* is a left h H^* – module via $h^* \to h = \sum h^*(h_2)h_1$ for $h^* \in H^*$, $h \in H$.

(4) *H* is a right H^* – module via $h \leftarrow h^* = \sum h^*(h_1)h_2$ for $h^* \in H^*$, $h \in H$.

If $g \in H$ is a grouplike element as in Definition1.1, we can denote by

$$
L_g = \{ m \in H^* \middle| h^*m = h^*(g)m \text{ for any } h^* \in H^* \}
$$

and

$$
R_g = \{ n \in H^* \mid nh^* = h^*(g) n \text{ for any } h^* \in H^* \} \text{ for any } h^* \in H^* \}
$$

which are ideals of H^* and $L_1 = \int_{I}$, $R_1 = \int_{r}$ Also recall from $^{[1]}$ that L_g and R_g are 1-dimensional,and there exists a grouplike element d such that $R_d = L_1$, where d is called the distinguished grouplike. We can perform the same constructions on the dual algebra H^* . More precisely,

for any $\eta \in G(H^*) = A \lg(H,K)$ we can define

 $L_n = \{x \in H | hx = \eta(h)x \text{ for any } h \in H\}$

$$
R_n = \{ y \in H | yh = \eta(h) y \text{ for any } h \in H \}
$$

We remark that if we keep the same definition we gave for L_g , then L_n should be a subspace of H^{**} . The set L_n , as defined above ,is just the preimage of this subspace via the canonical Isomorphism $\theta : H \to H^{**}$. From the above it follows that the subspaces L_n and R_n are ideals

of dimension 1 in H , and there exists $\alpha \in G(H^*)$ such that $R_\alpha = L_\varepsilon$. This element α is the distinguished grouplike element in H^* .

Remark1.2[1]

If *H* is semisimple and cosemisimple, then distinguished grouplike in *H* and H^* are equal to 1 and ε , respectively.

Lemma_{1.3}[^{2]}

Suppose that H is a Hopf algebra over K . Then

(1) The only subspaces of H which are both a left ideal and left coideal of H are and H

(2) If H contains a non-zero finite -dimensional left or right ideal. Then H is finitedimensional.

Lemma1.4[3]

Let *C* be a finite-dimensional coalgebra over *K*. Then $U \mapsto U^{\perp}$ is a one-one inclusion reversing correspondence between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of *C* and the set of subalgebras (respectively ideals, left ideals, right ideals) of the dual algebra $\overline{C}^*.$

$Lemma 1.5[³]$

If $C_n(K)$ is a simple coalgebra over K for all $n \geq 1$. Then any simple coalgebra over K is isomorphic to $C_n(K)$ for some $n > 1$.

Lemma1.6[4]

Suppose *U* and *V* be vector spaces over *K* and $F: V^* \to U^*$ is the transpose of a linear map $f: U \to V$. If *J* and *I* are subspaces of V^* and U^* respectively. Then $F(J) \subset I$ implies $f(I^{\perp}) \subseteq J^{\perp}$.

Remark1.7[4]

For a subspace V of U let $res_V^U:U^*\to V^*$ be the restriction map which is thus defined by $res_V^U(u^*)=u^*\big|V\big|$ for all $u^*\in U^*.$ Notice that $Ker(res_V^U)=V^\perp.$ Hence $U^*/V^\perp\cong V^*$ as vector spaces. Therefore we have the formula $Dim(U^*/V^{\perp}) = Dim(V^*)$. In particular V^{\perp} is a cofinite subspace of U^* if and only if V is a finite-dimensional subspace of U . Also notice that $res_V^U=i^*,$ where i : $V\rightarrow U$ is the inclusion map.

Definition1.8[4]

 \forall For $a \in H$, $a^* \in H^*$, $b \in H$, define endomorphisms $L(a^*)$ and $R(a^*)$ in $End(H)$ by and $R(a^*)(b) = b \leftarrow a^*$, on the other hand, $l(a)$ and $r(a)$ in $End(H)$ by $l(a)(b) = ab$ and $r(a)(b) = ba$.

Proposition 1.9[5]

Suppose that *S* is the antipode of *H*. Let Λ be a left integral for *H* and ω be a right integral for H^* which satisfy $\langle \Lambda, \omega \rangle = 1$. Then

(1) $Tr(r(a) \circ S^2 \circ R(a^*)) = \langle \omega, a \rangle \langle a^*, \Lambda \rangle$ for all $a \in H$, $a^* \in H^*$.

(2) The functional $\omega_r \in H^*$ defined by $\omega_r(a) = Tr(r(a) \circ S^2)$ for all $a \in H$ is a right integral for H^* .

Proposition 1.10[5]

Suppose that S is the antipode of H . Then the following are equivalent:

(1) H and H^* are semisimple.

(2) $Tr(S^2) \neq 0$.

Proposition 1.11^[5]

Suppose that *S* is the antipode of *H*.

(1) Let g and α be the distinguished grouplike elements for H and H^* respectively. Then $S^4 = \tau_g \circ (\tau_{\alpha^{-1}})^*$ or equivalently, $S^4(a) = g(\alpha \rightarrow a \leftarrow \alpha^{-1})g^{-1}$, for all $a \in H$.

(2) If H and H^* are unimodular, in particular if H and H^* are semisimple, then $S^4 = 1_H$.

(3) $Tr(S^2) = (Dim(H))Tr(S^2|_{X_H}H)$.

Theorem 1.12[6]

Let H be a Hopf algebra over K . Then the following are equivalent:

(1) All left H – comodules are completely reducible.

(2) $< \lambda, l >\neq 0$ for some $\lambda \in \int^r$. (3) $H = K1 \otimes C$ for some subcoalgebra C of H . $(4) < \lambda$, $1 > \neq 0$ for some $\lambda \in \int_1^{\lambda}$

(5) All right H – comodules are completely reducible.

Theorem 1.13[6]

Let *H* be a cosemisimple Hopf algebra with antipode *S*. Then $S^2(C) = C$ for all simple subcoalgebras *C* of *H*.

2 The order of the antipode

Lemma 2.1

Suppose $\eta \in G(H^*)$, $g \in G(H)$, $m, n \in H^*$ and $x \in L_\eta$ and $x \in L_\eta$ such that $m \to x = x \leftarrow n$. Then $m \in L_g$ and $n \in R_g$. Proof Let $h^*, g^* \in H^*$. Then

$$
(g^*h^*m)(x) = \sum (g^*h^*)(x_1m(x_2))
$$

$$
= (g^*h^*)(g)
$$

$$
= g^*(g)h^*(g)
$$

$$
= \sum g^*(m(x_2)x_1)h^*(g)
$$

$$
= (g^*h^*(g)m)(x)
$$

which shows that $(g^*(h^*m - h^*(g)m))(x) = 0$, so $(h^*m - h^*(g)m)(x \leftarrow H^*)$. But $x \leftarrow H^* = H$, since $L_n \leftarrow \eta = L_{\varepsilon}$ and L_ε ← H^* = H (applied for the dual of H^{op}). This shows that h^*m = $h^*(g)m,$ and so m ∈ L_g . The fact that n ∈ R_g is proved in a similar way.

Corollary 2.2

If $m \in H^*$, $x \in L_\varepsilon$, and $m \to x = 1$, then $m \in L_1$ and $x \leftarrow m = d$. **Proof** If $h^* \in H^*$, then $h^*(x \leftarrow m) = \sum h^*(x_2) m(x_1)$

$$
= (mh*)(x)
$$

$$
= h(d)m(x)
$$

$$
h*(m(x)d)
$$

Applying to the relation $\sum_{m} m(x, x) = 1$ we get $m(x) = 1$. This shows that $x \leftarrow m = d$. The fact that $m \in L_1$ is proved by Lemma 2.1.

Lemma 2.3

Suppose $x \in L_{\eta}$, $g \in G(H)$, $m \in H^*$ such that $m \to x = g$. Then for any $h^* \in H^*$ we have $\eta(g)h^*(1) = \sum h^*(x_1)m(gx_2)$. **Proof** From the fact that $\Delta(h^*) = \sum h_i^* \otimes h_2^*$, $g = m \rightarrow x$ and $\eta(g)x = gx$, we have ,we have

> $\eta(g)h^*(1) = \sum \eta(g)h_1^*(g^{-1})h_2^*(g)$ $= h_1^*(g^{-1})h_2^*(m(x_2)x_1\eta(g))$ $= h_1^*(g^{-1})h_2^*(m(gx_2)gx_1)$ $=\sum h^*(g^{-1}gx_1)m(gx_2)$ $=\sum h^{*}(x_{1})m(gx_{2})$

Lemma 2.4

 L et L_{η} , $g \in G(H)$, $m \in H^*$, and $\eta \in G(H^*)$ such that $m \to x = g$. Then for any $h \in H$ we have $S(g^{-1}(\eta \rightarrow h)) = (m \leftarrow h) \rightarrow x$.

Proof If $h^* \in H^*$. Then

 $h^*(S(g^{-1}(\eta \to h))) = \sum h^*(S(h_1)g)\eta(h_2)$

- = $\sum \eta(g)h^*(S(h_1)g)\eta(g^{-1}h_2)$
- $= \eta(g)((h^*S)\eta)(g^{-1}h)$
- $=\sum ((h_1^*S)\eta)(g^{-1}h)\eta(g)h_2^*(1)$
- = $\sum ((h_1^*S)\eta)(g^{-1}h)h_2^*(m(gx_2)x_1)$
- = $\sum (h_1^* S)(g^{-1} h_1) \eta(g^{-1} h_2) h_2^* (m(gx_2) x_1)$
- $=\sum h_1^*(S(h_1)g)h_2^*(m(gg^{-1}h_1x_2)g^{-1}h_2x_1)$
- $=\sum h_i^*(S(h_i)gg^{-1}h,x_im(h,x_2))$
- $=\sum h^{*}(x_{1}m(hx_{2}))$
- $= h^*((m \leftarrow h) \rightarrow x).$

Remark 2.5

If we write the formula from Lemma2.4 for the Hopf algebras H , H^{cop} , $H^{opp,cop}$ and H^{op} , we get that for any $h \in H$ the following relations hold:

Suppose $x \in L_n, m \to x = g$, then $S(g^{-1}(\eta \to h)) = (m \leftarrow h) \to x$; Suppose $x \in R_n$, $m \to x = g$, then $S^{-1}((\eta \to h)g^{-1}) = (h \to m) \to x$; Suppose $x \in R_n$, $x \leftarrow n = g$, then $S((h \leftarrow \eta)g^{-1}) = x \leftarrow (h \rightarrow n);$ Suppose $x \in L_n$, $x \leftarrow n = g$, then $S^{-1}(g^{-1}(h \leftarrow \eta)) = x \leftarrow (n \leftarrow h)$. In particular

If
$$
x \in L_{\varepsilon}
$$
, $m \to x = 1$, then $S(h) = (m \leftarrow h) \to x$ (2.1)
\nIf $x \in R_{\alpha} = L_{\varepsilon}$, $m \to x = 1$, then $S^{-1}(\alpha \to h) = (h \to m) \to x$ (2.2)
\nIf $x \in R_{\alpha} = L_{\varepsilon}$, $x \leftarrow n = d$, then $S((h \leftarrow \alpha)d^{-1}) = x \leftarrow (h \to n)$ (2.3)
\nIf $x \in L_{\varepsilon}$, $x \leftarrow n = g$, then $S^{-1}(g^{-1}h) = x \leftarrow (n \leftarrow h)$ (2.4)

Theorem 2.6

For any $h \in H$ we have $S^4(h) = d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d$.

Proof Suppose $x \in L_{\varepsilon} = R_{\alpha}$, and $m \in H^*$ with $m \to x = 1$. Corollary 2.2 shows that $m \in L_1$ and $m \in L_1$ and $x \leftarrow m = d$. Moreover, we have

$$
(S4(h) \to m) \to x = S-1(\alpha \to S4(h))
$$
 (by (2.2))
= S⁻¹(S⁴(\alpha \to h))
= S(S²(\alpha \to h))
= S(S²(\alpha \to h)) (by (2.1))

Since the map from H^* to H , sending $h^* \in H^*$ to $h^* \to x \in H$ is bijective, we obtain $S^4(h) \to m = m \leftarrow S^2(\alpha \to h)$

On the other hand,

.

 $x \leftarrow (m \leftarrow S^2(\alpha \rightarrow h) = S^{-1}(d^{-1}S^2(\alpha \rightarrow h))$ (by (2.4)) $(S^{-1}(S^2(d^{-1}(\alpha \rightarrow h)))$ $= S(d^{-1}(\alpha \rightarrow h))$ $= S(d^{-1}(\alpha \rightarrow h)d^{-1})$ $= S(((d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \leftarrow \alpha)d^{-1})$ $(x = x \leftarrow (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m)$ ^{(by (2.3))} Since the map $h^* \mapsto (x \leftarrow h^*)$ from H^* to H is bijective, we obtain that $m \leftarrow S^2(\alpha \rightarrow h) = (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m$ We got that

 $S^4(h) \rightarrow m = (d^{-1}(\alpha \rightarrow h \leftarrow \alpha^{-1})d) \rightarrow m$

then the formula follows from the bijectivity of the map $h \mapsto (h \rightarrow m)$ from H to H^* .

Theorem 2.7

Let H be a finite dimensional Hopf algebra. Then the antipode S has finite order. **Proof** By Theorem 2.6, we obtain by induction that

 $S^{4n}(h) = d^{-n}(\alpha^n \to h \leftarrow \alpha^{-n})d^n$ for any positive integer *n*. Since $G(H)$ and $G(H^*)$ are finite groups, their elements have finite orders, so there exists *p* for which $d^p = 1$ and $\alpha^p = \varepsilon$. Then it follows that $S^{4p} = I$.

3 Characterizations of semisimple Hopf algebras

Semisimlpe Hopf algebras are finite-dimsnsional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.

Lemma3.1

If*C* is a simple coalgebra over *K*, and*T* is a diagonalizable coalgebra automorphism of*C* . The

 $Tr(T) = (\sum_{i=1}^n \lambda_i)(\sum_{i=1}^n \lambda_i^{-1})$

where $\lambda_1, \lambda_2, \cdots, \lambda_n$ are eigenvalues for T.

Proof By lemma1.5 we obtain that $C \cong C_n(K)$ for some $n \ge 1$. Thus we may assume $C = C_n(K)$. The crux of the proof will be to show that there is a simple left coideal *M* of *C* such that $T(M) \subseteq M$. Necesarily $Dim(M) = n$.

T^{*} is an algebra automorphism of $C^* = M_n(K)$. By Skolem-Noether Theorem, there is an invertible matrix $u \in M_n(K)$ such that $T^*(a) = uau^{-1}$ for all $a \in M_n(K)$. Identify $C^* = M_n(K)$ with $End(V)$, where V is $n -$ an dimensional vector space over K . Since *K* is algebraically closed, *u* has an eigenvalue $\lambda \in K$. Let $v \in V$ be a non-zero vector satisfying $u(V) = \lambda v$. Regard *End*(*V*) and *V* as left $End(V)$ – modules via function composition and evaluation respectively. Then *V* is a simple module and the evaluation map

 e_v : *End*(*V*) → *V* given by $e_v(a) = a(v)$ for all $a \in End(V)$

is a module map. Therefore $L = Ker(e_v) = {a \in End(V)|a(v) = 0}$ is a maximal left ideal of $End(V)$ of codimension $n^2 - n$. Observe that $T^*(L) \subset L$. Set $M = L^{\perp}$. Then M is a minimal left coideal of C by Lemma 1.4 and $T(M) \subset M$ by Lemma 1.6. and Using Remark1.7 we see that $Dim(M) = n$.

Since *T* is diagonalizable and $T(M) \subseteq M$ it follows that the restriction $T|M$ is diagonalizable. Let be a basis of eigenvectors for and let $\lambda_1,\cdots,\lambda_n\in K$ satisfy $T(m_i)=\lambda_i m_i$ for all $1\leq i\leq n$. Then $\lambda_1,\cdots,\lambda_n$ are non-zer scalars since i s noe-one. For each $1\leq i\leq n$ write $\Delta(m_i)=\sum_{j=1}^nc_{i,j}\otimes m_j$. Then the $c_{i,j}$'s satisfy the comatrix identities and thus span a non-zero subcoalgebra D of *C* Since *C* is simple $D = C$. Since $Dim(C) = n^2$ necessarily the $c_{i,j}$'s from a basis for *C*. Applying $T \otimes T$ to both sides of the equation for $\Delta(m_i)$ yields $\sum_{j=1}^n \lambda_j c_{i,j} \otimes m_j = \sum_{j=1}^n T(c_{i,j}) \otimes \lambda_j m_j.$ Therefore $T(c_{i,j}) = \lambda_j \lambda_j^{-1} c_{i,j}$ for all $1 \leq i,j \leq n.$ Since $\{c_{i,j}\}_{1 \leq i,j \leq n}$ is a basis for*C* we calculat

$$
Tr(T) = \sum_{i=1}^{n} \lambda_i \lambda_i^{-1} = (\sum_{i=1}^{n} \lambda_i) (\sum_{i=1}^{n} \lambda_i^{-1}).
$$

Theorem 3.2

Let H be a Hopf algebra with antipode S over K . Then the following are equivalent.

 (1) *H* is cosemisimple.

 $(Tr(S^2) \neq 0.$

 (3) *H* is semisimple.

 $(4) S² = 1_u$.

(5) $\omega : H \to K$ defined by $\omega(a) = Tr(r(a))$ for all $a \in H$ is a right integral for H.

Proof (1) \Rightarrow (2). Since *H* is cosemisimple it is the direct sum of its simple subcoalgebras. Let *C* be a simple subcoalgebra of H. Then $S(C)$ = C By Theorem1.13. Now S^2 has finite order by part (1) of Theorem Proposition1.11. Since K is algebraically closed of characteristic zero S^2 is diagonalizable. Thus $Tr(S^2) = (\sum_{i=1}^n \lambda_i)(\sum_{i=1}^n \lambda_i^{-1})$ where $\lambda_1, \dots, \lambda_n$ are roots of unity by Lemma 3.1. Since the characteristic of K is zero we may assume that $\lambda_1,\dots,\lambda_n\in\mathbb{C}$, the field of compex mubers. Thus $Tr(S^2|C) = (\sum_{i=1}^n \lambda_i)(\sum_{i=1}^n \lambda_i^{-1}) = (\sum_{i=1}^n \lambda_i)(\overline{\sum_{i=1}^n \lambda_i}) = \left|\sum_{i=1}^n \lambda_i\right|^2$

is a non-negative real number. Therefor $Tr(S^2)=1+\sum_i Tr(S^2|C)\geq 1$, ewhere C runs over the simple subcoalgebras $C\neq K1$ of H . We

have shown that $Tr(S^2) \neq 0$.

 $(2) \implies (3)$. It is pretty obvious by Proposition 1.10.

(3) \Rightarrow (4). Assume that *H* is semisimple. Then *H*^{*} is cosemisimple. We have just show *H*^{*} is semisimple; thus *H* is semisimple and cosemisimple. In particular $Tr(S^2) \neq 0$. Now $Tr(S^2) = (Dim(H))Tr(S^2|_{Y,H})$ by part (3) of Proposition 1.11 and $S^4 = 1_H$ by part (2) of Porposition1.11. Since the characteristic of K is not 2, the last equation implies S^2 is a diagonalizable endomorphism of H with eigenvalues ± 1 . Choose a basis of eigenvectors for S^2 . Let n_+ be the number of basis vectors belonging to the eigenvalue 1 and let *n*[−] be the number belonging to -1. By the preceding trace formula $n_+ - n_- = (n_+ + n_-)m$ for some integer *m* which is not zero since $Tr(S^2) \neq 0$. Squaring both sides of this equation yields $-2n_1n_1 = (m^2-1)n_1^2 + 2m^2n_1n_1 + (m^2-1)n_1^2 \ge 0$. Therefore $n_1n_2 = 0$. Since $n_1 ≠ 0$ necessarily $n_1 = 0$. We have shown $S^2 = 1$ _{*H*.}

 $(4) \implies$ (5). That it is very simple follows by part (2) of Proposition 1.9.

(5) \implies (1). Since $\omega(1) = Dim(H)1 ≠ 0$, thus our proof is complete by Theorem 1.12.

References:

[1] Sweedle M E. Hopf Algebra[M].New York Benamin;1969.

[2] Etingof, P. and Gelaki, S. On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic[J], Internat. Math. Res. Notices 1988.

[3] Radford D.E., The Structure of Hopf Algebras with a Projection[J], J.Algebra, 1985.

[4] Abe,E.Hopf Algebra[M].Cambridge Tracts in Mathematics 74,Cambridge University Press, Cambridge-New York;1980.

[5] Montgomery S.,Hopf Algebras and Their Actions on Rings[M],CBMS Reginal Conference Series in Math, 82,Amer.Math. Soc.,Porvidence,1993.

[6] Radford D.E., On the antipode of a cosemisimple Hopf algebra[J], J. Algebra,1985.

About the Author:

Yuqiu Wei (1981-),female, associate professor, master tutor, research direction: mathematics teaching theory.

Corresponding author:

Beishang Ren (1956-), male, Professor, master tutor, research direction: ring and module theory and Hopf algebra.