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1 Introduction

Throughout this paper is a algebraically closed field and has characteristic0, is a finite -dimensional −K Hopf algebra 

with antipode  which is a diagonalizable operator andC is a −K coalgebra . There is a convenient adaptation of the Heyneman–

Sweedler[1] singma notation for coalgebras and comodules as (1) (2)
( )∆ = ⊗∑c c c and ( 1) (0)( )ρ −= ⊗ ∀ ∈∑c c c c C   . 

Definition1.1[1] 

A grouplike elements of C is a Cc∈ which satisfies the following conditions: ccc ⊗=∆ )(  and ,1)( =cε the set of C
grouplike elements of   is denoted )(CG  .

We firstly recall the following actions as module structures:

(1)  ∗H is a left −H  module via for .,, ∗∗ ∈∈ HhHgh
(2)  ∗H is a rigt −H  module via  for .,, ∗∗ ∈∈ HhHgh    

(3)  H  is a left h −∗H  module via 12 )( hhhhh ∑ ∗∗ =→  for ., HhHh ∈∈ ∗∗   

(4)  H  is a right −∗H  module via 21)( hhhhh ∑ ∗∗ =←
 
for ., HhHh ∈∈ ∗∗   

If Hg∈  is a grouplike element as in Definition1.1, we can denote by

                    
mghmhHmLg )({ ∗∗∗ =∈= for any }∗∗ ∈Hh   

and

                    
for any }∗∗ ∈Hh  

which are ideals of ∗H and ∫∫ ==
rl

RL ., 11 Also recall from[1] that gL
 
and gR

 
are 1-dimensional,and there exists a grouplike 

element d  such that 1LRd = , where d  is called the distinguished grouplike. We can perform the same constructions on the dual 

algebra ∗H . More precisely, 

for any ),lg()( KHAHG =∈ ∗η we can define
                  

We remark that if we keep the same definition we gave for gL , then ηL
 
should be a subspace of ∗∗H .The set ,ηL

 
as 

defined above ,is just the preimage of this subspace via the canonical Isomorphism .: ∗∗→ HHθ From the above it follows that 

the subspaces ηL
 
and ηR

 
are ideals

of dimension 1 in ,H  and there exists )( ∗∈ HGα  such that εα LR = . This element α  is the 

distinguished grouplike element in .∗H    
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Remark1.2[1]

If H  is semisimple and cosemisimple, then distinguished grouplike in H  and ∗H  are equal to 1 and ε  , respectively. 

Lemma1.3[2]

Suppose that H  is a Hopf algebra over K  . Then

(1) The only subspaces of H  which are both a left ideal and left coideal of H  are and H
(2) If H  contains a non-zero finite -dimensional left or right ideal. Then H  is finite-
dimensional.

Lemma1.4[3]

Let C  be a finite-dimensional coalgebra over .K  Then ⊥UU   is a one-one inclusion reversing correspondence 

between the set of coideals (respectively subcoalgebras, left coideals, right coideals) of C  and the set of subalgebras (respectively 

ideals, left ideals, right ideals) of the dual algebra .∗C   

Lemma1.5[3]

If )(KCn  is a simple coalgebra over K  for all .1≥n Then any simple coalgebra over K  is isomorphic to )(KCn  for 

some .1≥n   

Lemma1.6[4]

Suppose Uand V  be vector spaces over K  and ∗∗ →UVF :  is the transpose of a linear map VUf →: . If J  and I  are 

subspaces of ∗V  and ∗U  respectively. Then IJF ⊆)(  implies ⊥⊥ ⊆ JIf )( .

Remark1.7[4]

For a subspace V of U  let ∗∗ →VUresU
V :  be the restriction map which is thus defined by VuuresU

V
∗∗ =)(

 
for all ∗∗ ∈Uu . Notice that .)( ⊥=VresKer U

V  Hence ∗⊥∗ ≅VVU  as vector spaces. Therefore we have the formula 

 In particular ⊥V  is a cofinite subspace of ∗U  if and only if V  is a finite-dimensional subspace of .U  Also 

notice that ,∗= iresU
V  where UVi →:  is the inclusion map.

Definition1.8[4]

For ,, ∗∗ ∈∈ HaHa Hb∈ , define endomorphisms )( ∗aL  and )( ∗aR  in )(HEnd  by 
and , on the other hand, )(al  and )(ar  in )(HEnd  by  and  .

Proposition 1.9[5]

Suppose that S  is the antipode of .H  Let Λ be a left integral for H  andω be a right integral for ∗H  which satisfy 

 Then
(1) for all ., ∗∗ ∈∈ HaHa   

(2) The functional ∗∈Hrω  defined by  for all Ha∈  is a right integral for .∗H   

Proposition 1.10[5]

Suppose that S  is the antipode of .H  Then the following are equivalent:

(1) H  and ∗H  are semisimple.
(2)   

Proposition 1.11[5]

Suppose that S  is the antipode of .H    

(1) Let g  and α  be the distinguished grouplike elements for H  and ∗H  respectively. Then ∗
−= )( 1

4
α
ττ gS

 
or 

equivalently, 114 )()( −−←→= gagaS αα  , for all Ha∈  .

(2) If H  and ∗H  are unimodular , in particular if H  and ∗H  are semisimple, then .14
HS =   

(3)   .

Theorem 1.12[6]  

Let H  be a Hopf algebra over .K  Then the following are equivalent:
(1) All left −H  comodules are completely reducible.
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(2)   for some .

(3) CKH ⊗= 1  for some subcoalgebra C of H  .

(4) for some   
(5) All right −H  comodules are completely reducible.

Theorem 1.13[6]

Let H  be a cosemisimple  Hopf algebra with antipode .S  Then CCS =)(2
 for all simple subcoalgebras C of H .

2 The order of the antipode 

Lemma 2.1

Suppose  and ηLx∈
 
such that .nxxm ←=→  Then gLm∈

 
and .gRn∈   

Proof  Let ., ∗∗∗ ∈Hgh Then  

                                 

                                               

 

wh ich  shows  tha t ,0)))()((( =− ∗∗∗ xmghmhg so .Bu t ,HHx =← ∗  s i nce εη η LL =← and 

HHL =← ∗
ε  (applied for the dual of  ). This shows that ,)( mghmh ∗∗ =  and so .gLm∈  

The fact that 
gRn∈  

is proved in a 

similar way.    

Corollary 2.2

If ,, εLxHm ∈∈ ∗

 and ,1=→ xm  then 1Lm∈  and .dmx =←   

Proof  If ,∗∗ ∈Hh  then
                                

                     

                               

  

Applying to the relation 1)( 12 =∑ xxm
 
we get .1)( =xm  This shows that .dmx =←  The fact that 1Lm∈  is proved by 

Lemma 2.1.

Lemma 2.3

Suppose such that .gxm =→ Then for any ∗∗ ∈Hh we have .

Proof   From the fact that ∑ ∗∗∗ ⊗=∆ 21)( hhh , xmg →= and ,we have

Lemma 2.4

L e t , a n d )( ∗∈ HGη s u c h  t h a t .gxm =→ T h e n  f o r  a n y Hh∈ w e 
have xhmhgS →←=→− )())(( 1 η   .

Proof   If .∗∗ ∈Hh  Then
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Remark 2.5

If we write the formula from Lemma2.4 for the Hopf algebras  and , we get that for any Hh∈  the 
following relations hold:

Suppose  

Suppose  

Suppose  

Suppose  

In particular

             If      (2.1)

             If          (2.2)

             If       (2.3)

             If                     (2.4)

Theorem 2.6

For any Hh∈  we have dhdhS )()( 114 −− ←→= αα   .

Proof  Suppose ,αε RLx =∈ and ∗∈Hm with 1=→ xm . Corollary 2.2 shows that 1Lm∈  and 1Lm∈  and dmx =←  . 
Moreover, we have

                 (by (2.2))

             
             

                                             (by (2.1))

 Since the map from ∗H toH , sending ∗∗ ∈Hh to Hxh ∈→∗ is bijective, we obtain )()( 24 hSmmhS →←=→ α
                     .                              

On the other hand,

))(())(( 2112 hSdShSmx →=→←← −− αα (by (2.4))

)))((( 121 hdSS →= −− α
))(( 1 hdS →= − α

))(( 11 −− →= ddhdS α
))))(((( 111 −−− ←←→= ddhdS ααα

)))((( 11 mdhdx →←→←= −− αα (by (2.3))

Since the map


∗h )( ∗← hx  from ∗H  to H  is bijective, we obtain that 

mdhdhSm →←→=→← −− ))(()( 112 ααα

We got that
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mdhdmhS →←→=→ −− ))(()( 114 αα  

then the formula follows from the bijectivity of the map
h )( mh → from H to ∗H .     

Theorem 2.7

Let H be a finite dimensional Hopf algebra. Then the antipode S has finite order.   
Proof  By Theorem 2.6, we obtain by induction that

nnnnn dhdhS )()(4 −− ←→= αα for any positive integer .n Since )(HG and )( ∗HG are finite groups, their elements have 

finite orders, so there exists p for which 1=pd and .εα =p Then it follows that .4 IS p =         

3 Characterizations of semisimple Hopf algebras
Semisimlpe Hopf algebras are finite-dimsnsional by part (2) of Lemma 1.3. We characterize finite-dimensional Hopf 

algebras which are semisimple in the algebraically closed characteristic zero case. To this end we calculate a trace.

Lemma3.1

IfC is a simple coalgebra over ,K andT is a diagonalizable coalgebra automorphism ofC . The
                                                                    

where nλλλ ,,, 21  are eigenvalues forT .

 Proof  By lemma1.5 we obtain that )(KCC n≅ for some .1≥n Thus we may assume )(KCC n= . The crux of the proof will 

be to show that there is a simple left coideal M ofC such that .)( MMT ⊆ Necesarily .)( nMDim =   

 ∗T is an algebra automorphism of  By Skolem-Noether Theorem, there is an invertible matrix )(KMu n∈  
such that 1)( −∗ = uauaT for all  Identify )(KMC n=∗ with )(VEnd ,whereV is −n an dimensional vector space over .K
Since K is algebraically closed, u has an eigenvalue .K∈λ Let Vv∈ be a non-zero vector satisfying .)( vVu λ= Regard )(VEnd
andV as left −)(VEnd modules via function composition and evaluation respectively. ThenV is a simple module and the 
evaluation map

                                      VVEndev →)(: given by )()( vaaev = for all )(VEnda∈    

is a module map. Therefore }0)()({)( =∈== vaVEndaeKerL v is a maximal left ideal of )(VEnd of codimension .2 nn −
Observe that .)( LLT ⊆∗ Set .⊥= LM Then M is a minimal left coideal of C by Lemma 1.4 and MMT ⊆)( by Lemma 1.6. and 

Using Remark1.7 we see that .)( nMDim =    

SinceT is diagonalizable and MMT ⊆)( it follows that the restriction MT is diagonalizable. Let be a basis of eigenvectors 

for and let Kn ∈λλ ,,1  satisfy iii mmT λ=)( for all .1 ni ≤≤  Then nλλ ,,1  are non-zer scalars since  is noe-one. For 

each ni ≤≤1 write .)(
1 , j

n

j jii mcm ⊗=∆ ∑ =
Then the jic , ’s satisfy the comatrix identities and thus span a non-zero subcoalgebra D

of C SinceC is simple .CD = Since 2)( nCDim = necessarily the jic , ’s from a basis for C . Applying TT ⊗ to both sides of the 

equation for )( im∆ yields .)(
1 ,1 , jj

n

j jij
n

j jii mcTmc λλ ⊗=⊗ ∑∑ == Therefore =)( , jicT jiji c ,
1−λλ for all .,1 nji ≤≤ Since njijic ≤≤ ,1, }{ is a basis 

forC we calculat
                                           
Theorem 3.2
Let H be a Hopf algebra with antipode S over K . Then the following are equivalent.

(1) H is cosemisimple.
(2)   

(3) H is semisimple.

(4) .12
HS =  

(5) KH →:ω defined by for all Ha∈ is a right integral for .H   

Proof  (1)⇒ (2). Since H is cosemisimple it is the direct sum of its simple subcoalgebras . Let C be a simple 

subcoalgebra of H . Then CCS =)( By Theorem1.13 . Now 2S has finite order by part (1) of Theorem Proposition1.11. Since K
is algebraically closed of characteristic zero 2S is diagonalizable. Thus where nλλ ,,1  are roots of unity 

by Lemma 3.1. Since the characteristic of K is zero we may assume that ∈nλλ ,,1  C, the field of compex mubers. Thus 
                                                  

is a non-negative real number. Therefor ewhereC runs over the simple subcoalgebras 1KC ≠ of H . We 
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have shown that  .

(2)⇒(3). It is pretty obvious by Proposition1.10. 

(3)⇒(4). Assume that H is semisimple. Then ∗H is cosemisimple. We have just show ∗H is semisimple; thus H
is semisimple and cosemisimple. In particular . Now  by part (3) of Proposition 

1.11 and HS 14 = by part (2) of Porposition1.11. Since the characteristic of K is not 2, the last equation implies 2S
is a diagonalizable endomorphism of H with eigenvalues .1± Choose a basis of eigenvectors for 2S . Let +n be the 

number of basis vectors belonging to the eigenvalue 1 and let −n be the number belonging to -1. By the preceding trace 

formula mnnnn )( −+−+ +=− for some integer m which is not zero since . Squaring both sides of this equation 

yields .0)1(2)1(2 22222 ≥−++−=− −−++−+ nmnnmnmnn Therefore .0=−+nn Since 0≠+n necessarily .0=−n We have 

shown .
2 1HS =   

 (4)⇒(5). That it is very simple follows by part (2) of Proposition1.9. 

 (5)⇒(1). Since ,01)()1( ≠= HDimω  thus our proof is complete by Theorem1.12.
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