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Introduction

In the theory of partial differential equations,the study of heat equations has a long history.Meanwhile,with the tremendous prog-
ress of mathematical theory over the past two centuries,the study of heat equations has developed rapidly.Specially,the asymptotic
properties of heat equation solutions have attracted great attention from many scholars.For example,in ref.!lthe asymptotic properties
of classical heat equation solutions in Euclidean space were comprehensively discussed and these properties hold true for all integra-
ble initial values g (x).And under some additional assumptions,the accuracy of the results is verified. At the same time,ref.?pointed
out that the long-term asymptotic properties of the solution of the heat equation in hyperbolic space Hyare not valid for all initial
valuesg (x) € Ll(Hu_).Ref.[3]studied the long-term asymptotic properties of the solution of the heat equation in noncompact sym-
metric spaces by using harmonic analysis methods.Recently,Professor Grigor’yan et al.studied asymptotic properties of the solution
of the heat equation with initial value Llcorresponding to Brownian motion in ref.!

1. Main Conclusions
Before giving the main conclusions of this paper,we first review the relevant conclusions of the ref.*'mentioned above.
Theorem 1.1.LetMbe a complete,connected,non-compact Riemannian manifold with non-negative Ricci curvature.Let
U (x) c Ll(M ’ ,!{).Then the solution of the heat equation satisfies for any xg € M,

lim |Ju(t, -) — M he(-, Xo) 2 g )

t—»o =0,
and Yim ||ju(t, -) — M*h (-, %)V (-, VOl qaa ) = 0
t—>»o0

withM* == J-M Uy (x) pt(dx) Heat kernel h: (%, ¥)is positive fundamentals of the heat equation.

Inspired by ref.*,we naturally raise a question:If we consider the symmetric ¢ — stable processX: = (X t)tgﬂOﬂ the metric
space M ,does the corresponding solution of the heat equation still have similar properties?The purpose of this paper is to give a pos-
itive answer to the above questions.To illustrate our results,we first give the framework and main conditions.
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Let (M , d, ()be the metric measure space,where His a fully supported non-negative Radon measure on M LetB (x, T)repre-
sent the opening ball with Xas the center and T"as the radius on (M ’ d:),i.e.

B(x,7) ={yeM:d(x,y) < 1}

LetV (x, 1) = u(B(x, r).In this paper,we assume that Msatifies the volume multiplication condition,i.e.

(VD):(Volume doubling condition)There exists a positive constant C'1.For allx € M, = 0,we have

V(x,2r) < C{V(x,7). (1.1)
(RVD):(Reverse volume doubling condition)There exist positive constantse, C, v, v Forallx € Mand(Q < r < R.we have
R\’ V(x.R) RYY
2 =22 = (2
C(‘l") V) T C(r’) . (1.2)

We notice that if Mis connected and unbounded,we can get(VD)-»(RVD).See ref.[5,inference 5.3].

This paper will consider the symmetric Markov process (X ;);;_buon Lz( M, 1) where (P ;};;_-..uis the corresponding Markov
semigroup of(X ;) t=0.We assume that (X ;) t=phas a heat kernel P¢ (x, _V),i.e.

Pif(x) = [, FOpe(x, y)u(dy) f(x) € LA M, ).

Among them, LP(M, prepresents the LPspace on M.

‘We assume that Pt (x, _V)satisﬁes the following condition,i.e.

(1)heat kernel upper bound:

m(x.y}:‘é(v ——A t )

(p71(1) " V(xd(xy))e(d(xy))/. (1.3)

(2)0-Holder continuity:if there is@ € (0,1],we have

d(xq, )
Ipe(xy) — p(x,%0)| = (%) [ pe(x,y) + pe(x, %0)]- (1.4)

Let’s note here thatRy = [0,+°0)and¢’is a strictly monotonic increasing function on]R+satisfying @(0) =0 and

¢(1) = 1 And there is a constant €1,€2 >0, 1 = B2 > 0 Forall 0 < r = R there are the following scaling conditions:

cl(%)ﬂl < % < cz(%)ﬁz. (1.5)

Notationg < Ris equivalent to the existence of a constant Csuch that A =< CB.

Let Lbe the infinitesimal generator operator of semigroup (P ;};;_-..u .Consider the following heat equation
d:u = Lu,
(1.6)
u(0,x) = up(x).
It’s easy to know if the initial value Uy € L? (M ’ ,!a'.),the heat equation has a unique solution u(t,-) € LP (M ’ ,!i).And it can

be represented as
u(t, x) = [o,Pe(x, Mug(¥)p(dy).
The main theorems of this article are as follows:
Theorem 1.2.Under above assumptions,we continue the following content.

Let up € LF(M, p)and note M~ = f u Uo () 1(dx) The solution of the heat equation satisfies for any x, € M,
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lim |lu(t, -) — M.pe(-, %0)[l2 ) = O, 7
t—>o0 (L.7)

and . ]
lim [[fu(t, -) = M.pe(-, %) IV(-, ¢ ()l =0

t—>o0 ) (1.8)
Remark 1.3.(1)Combining with theorem 1.2 and the interpolation theorem,it can be obtained when 1y € L? (M,ﬂ)with

1 < p < o0 .Forany xXg € M,we can deduce that

lim [|u(t, <) — M.pe (-, %) V(- 6OV lip g = O-

t—poo

here p’ > 1 satisfies l—l- l =1

p p

(2)Comparing with Theorem 1.1,it can be seen that for symmetric @@ — stable processes in metric measure spaces,their corre-
sponding heat equations have the same asymptotic properties as those on Riemannian manifolds.
2. Proof of Theorem

In this section,we will prove Theorem 1.2 in three steps.Firstly,by using the initial value of continuous compact support,we will
prove that the solution of the heat equation(1.6)converges in Ll.Next,we use density to transition special initial values to all L initial
values to prove that the conclusion still holds.Finally,transition to L convergence by the same method.To sum up,we will provide a
complete proof of Theorem 1.2.

Before the formal proof of Theorem 1.2,we will provide two lemmas,which will be frequently used in the proof process of The-
orem 1.2.

Lemma 2.1.Under the conditions of(1.3),for anyxy € Mand t = 0,we obtain

JyPe(xo, 0p(dx) S 1. @1
And whent < ¢ (-r),we obtain
Jp g rye Px0,¥)n(dx) < Ftr)- 22)

Proof:We first prove equation(2.2).For any t < ¢b(7)according to equation(1.3),we obtain

| Crn@ < | d
d(x.xg)=r P X0k " &V drsargy <ot V(xo, d(x, x0) )p(d(x, x0))

cy Vo2 b
S L0 Y(xgin) | @(Dr)

Among them,the last inequality is obtained according to equation(1.2).Then by using equation(1.5)to estimate ¢ (Zj T),it can be

p(dx)

v e t
2 20 5oy

concluded that

=P = o em L Fy
Obviously,equation(2.2)holds.

To prove the validity of equation(2.1),we assume that 1 = (,\5_1 (t),then we have

[ peexouen s | - d ()

w\V (0, 610) " V(%o d(x 1)) # (A0 x0))
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t
B fB(xu,rJC V(xq, d(x, x0) )¢ (d(x, %)) (dx)

1
+ ——u(dx)
fs YR 0) V(xn, f?f’_l(t)) g

S1+ f R —
B xu,q:—l(t)) V(xu. ¢'_1(t))

The proof of equation(2.1)is completed.

p(dx) =2

Note ¢@(t)a definite positive function and when it satisfies t — 00, @(t) — 0.For Xg € M define

-1
A= {x EM: ()¢~ 1(t) = d(x,x) = ¢_[t)} : (23)
@)
Lemma 2.2.Under the conditions of{(1.3),for sufficiently large t,we have
fM\At pt(xn x[l) .u'(dx) = qa(t)vj\glj (24)

Among them,constants vand P1are respectively taken from equations(1.2)and(1.5).Specifically,when & — ©0,we can obtain

fﬂtm(x, xp)u(dx) — 1. 2.5)

Proof:We first prove that equation(2.4)holds.Note that
M\ A; = B(xo, ()¢~ (1)) U B(x0, 6 (1)/ (1))

C
We estimate the integration ranges of B (xu, p(D)d1(2) )and B (xu, ¢~ (t)/ ﬁﬂ(t))

C

separately. Assume that tis large enough and make @(t) < 1.By using equations(1.2)and(1.3),we have

1
P xo)p(dx) < j S

J dxx0)<p(®)eL(®) dxxg)<oe @) V(xg, d71(1))

_ V(o p@¢7'(D)

< o(1)”.
Vo @) PO

_¢'®
On the other hand,letT = o(t) thatis thereis T = (,\5(?"(0 (t) ) .Therefore,according to equation(2.2),we have

t
: dx) < dx
J d(m)?%pt(x T f Blxor V(0. d(x, xo))(b(d(x,xo))ﬁ{ )

ot _¢re®)
OREG

Combining the above two parts,we can obtain

| wexom@n - | PR @ + [ pxoou)
M\ dlxxo)<@(t)g '(£)

d(em)> D

< p(o)F.

< @(t) .
The proof of equation(2.4)is completed.

From equation(2.4),it is evident that(2.5)holds whent — ©a.
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Let’s begin to prove the special case of Theorem 1.2.
Proposition  2.3.Assume(1.3)and(1.4)conditions hold.Let Ug € Cg (M )satisfying suppug € B (xg, a)withxu e M,
a > 0.Let @(t)be a positive function satisfying whent — o0, @(t) — 0and qa(t)q!:_l (t) — 0.When tis large enough,the
solution of the heat equation(1.6)satisfies

' 2.6
llu(t, -) — MpeC-, x0) | panay S @O, (@6)

and

l[ut, ) — M.pe (-, x0) | sy S [971(0]7° 2.7)
And Atis the annulus defined by equation(2.3).Besides,constant vrand B lare taken from equations(1.2)and(1.5)respectively

and J- ug (%) p(dx) Spemally,when is big enough,

llu(t, -) — M.p: (-, %)l 2y S [67 (D17, @38
with 0 < A < min(v' A By, B) )
Proof:We first prove that equation(2.6)holds.According to Lemma 2.2,we have

[pe(-, x0)I |L1(M'\At} < @(t)” B 2.9)
Therefore we only need to prove that

lut, Mlrgpa, S @71 (2.10)

By using the Fubini theorem and supp Up € B (0, @), we have

lut, lzzona, = fw fu(t, )| u(dx)

t

f [ 5o y)ue() )u(dy) lud)
MA; Y B(xg.a)

= f 621 U pe(x,y) ﬁ(dx)} u(dy).
B(xp.a) M\A;

Notice that when tis large enough for anyx € M \ Asand ¥ € B(xg, @).then we have X € M \ A¢ywith

-1
Ay = [x EM20(1)p (1) <d(xy) < (t())}

In fact,when Lis big enough and X € M\ A, y.then we have
—1 -1
t
., _¢'®

d(x xﬂ) = d(x J’) + d(}';xﬂ) —= {t} +a (0(!.’) ’

and

d(x, x0) = d(x,y) —d(y,%0) = 2¢(1)¢p (1) —a = ()~ '(t),

Thus X € Ag.In this way,from Lemma 2.2,it can be concluded that
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f p:(x, y)p(dx) < f _ pe(x, y)u(dx) S @(t)" 1.
M\A, MM\Aey
The proof of equation(2.10)is completed.Combining equations(2.9)and(2.10),it can be concluded that equation(2.6)holds.

Let’s continue to prove that equation(2.7)holds.Firstly

u(t, ) — M.py(x,x0) = fM 2 (% ¥)uo () u(dy) — jM P (x, %00 (v) u(dy)

= fMuﬂ@)(p;(x, ¥) — pe(x, x9) ) u(dy)

= Jotpw W) (2t (x,¥) — pe(x, x0)) 1(dy)
According to equation(1.4),it can be obtained that

[u(t, x) — M.p:(x, %) | < f [P (x, ¥) — pe(x, x0) | p(dy)
B(Iu,a)

< d(xg, ¥) 9

~ J’B(xg,a} |uﬂ(y)| ( l;b_l(t) ) [pt(xl }') + ;U;(x,xn)] .u,(dy)

By using the Fubini theorem and d(xg, }') = d,we have

e, 3) — M.yt )y = | 1t ) — Moo )] ()
A

d(x, V) \°
S[ [ o (M) [2.C5 ) + 7y (% x)] p(dy)(d)
A, B ¢~ (1)

sloor |

B(xp.a)

+ [lP_l(f)]_ﬂJ )luu(y)|{ pe(x, x0) pt(dx]} p(dy)
Ar

B(xp.a

qu(y)l{ pr{x,y)#(dx)}#(dy)
A

S [~ (]
The proof of equation(2.7)is completed.

Take Esmall enough and let (a(t) = [¢'_1 (t)] _1r£.Then combine with equations(2.6)and(2.7),we have
-1 —A
[lu(t, -) — M.p: (-, %)l 2y S [ (O],
with0 < A < min (1" A B4, '9).The proof of equation(2.8)is completed.
Based on Proposition 2.3,we now prove the general case of Theorem 1.2
X . 1 o
Proof:Based on density,for any fixed g € L™ (M, p)and any £ > O,there is iy € C.(M)to make
— E
— 1 < —.
[ — up| |L o =3

We first prove that equation(1 .7)h01ds.LetE = fM‘ up(y) u(dy).we have

—— —— £
M. = FE2| < [ ua) — @0 @) = llto — Tz <3-
M
Thus we conclude
[|M.p:(-,x0) — EP;(' :xn)”Ll(M) = |M, — M. o (- ,xn)”Ll(M) ‘:g- (2.11)

Let Ti(t, x)be the solution of the heat equation(1.6)with initial value Ugand we have
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(e, ) = 8t gy = Jy () — GOy e ) uld)} uldy) <3 2.12)
On the other hand,according to equation(2.8)in Proposition 2.3,for a sufficiently large t,we have

I3, ) — M.pe (- xo)ll 2oy <3 (2.13)
Combining equations(2.11),(2.12),and(2.13)together,we can obtain

[Ju(t, ) — M.p: (-, x0) 2y < &
The proof of equation(1.7)is completed.
Next,we prove that equation(1.8)holds.Since 1igis tightly supported and when tis large enough,by using the proof of equa-

tion(2.7)in Proposition 2.3,we have

[6(t, %) — Moo, x0)| S [ 2(0)] j luo () P2 (x, Y)u(dy)

B(xg.a)

+ O] f o ()¢ x, x0) (dy)

B(xgp.a)

1
S [~ 1(0)] u ——u(d
[0)] [Bm| ol ey )

E

55—
% (m-lm) (2.14)
Furthermore,we have

|lu(t,x) — (e, x)| = f ; Pe(x,¥) [uo(y) — g (y) |u(dy)

o — ug| |20
- V(xeT'(®)

< 2.15
v(xel() (2.15)

and
[1M.pe (x, x0) — M.p:(x, x0) 1| = |M. — M|p.(x, ) S #_1@) 2.16)
Therefore,by combining equations(2.14),(2.15)and(2.16),it can be concluded that equation(1.8)holds.
3. Example
Ref.®provides a series of equivalent characterizations of the upper bound estimation of the heat kernel corresponding to symmet-
ric & — stable mixed type processes in metric measure spaces.On the other hand,equation(1.4)requires the heat kernel to satisfy

local Holder continuity,but it cannot be directly obtained from the Holder continuity of the parabolic harmonic function corresponding

to symmetric @& — stable mixed type processes.To be specific,ref."lconsiders the continuity of the heat kernel as follows:

d(x.y)\? 1
Ipee) = o)l = (385) 7ty

3.1)
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Obviously,equation(3.1)is weaker than equation(1.4)
Next,we will provide a simple example to illustrate the assumption that symmetric & — stable process in Euclidean space
satisfies Theorem 1.2.
Let X := (X t}t;_k_,uis a symmetric & — stable — Lévy process on R%and its corresponding infinitesimal generator is
(A)*/2 =— (—A)%2 Let P:(X, ¥)be the corresponding heat kernel of X.As is well known,

pe(x,y) =p(x—y) =t %A x,y ER%t >0, (3.2)

|I—)T|d+“ '
and

Ve (x) =t /% (x), xERLt=0.
The notation A = Bmeans that there exist constants €1, €3 > 0 tomake ¢;B < A < ¢, B.Thus,forany x,y, xg € R?
there exists § € (0,1)and

Ip:(x,¥) — P, x0)| < |Vupe(x, €y + (1 — ©)x0)|ly — %0l

<20y + (1 - D)

Iy—xo| .
< 2% (%, ¥) + e (x, %0)]

The final step is obtained according to equation(3.2).
In summary,Theorem 1.2 holds for symmetric @ — stable process in Euclidean space.Specifically,it can be obtained from

equation(1.8)that

lim [Jut, ) = M.pe, x0)| 4] =0,
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