On a Hypothetical Research Direction and Its Prospects: The Potential Role of Rare Earth and Metal Mineral Combinations in Tsunami Prevention Mechanisms
Abstract
as neodymium (Nd), lanthanum (La), cerium (Ce), and metals such as titanium (Ti), iron (Fe) in tsunami prevention. Through an in-depth
analysis of the electronic structure and physical properties of rare earth elements, the energy transmission mechanism within the Earth, and the
possible modes of action of mineral combinations, we attempt to construct a hypothetical framework based on theoretical analysis. Although
there is currently no concrete experimental evidence to support this hypothesis, this theoretical framework integrates theories related to geophysical processes, element properties, and mineralogy, hoping to provide ideas and directions for future exploration of the feasibility of this
hypothesis.
Keywords
Full Text:
PDFReferences
[1] Synolakis C E, Bernard E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions, 2006,
364(1845):2231-2265. DOI:10.1098/rsta.2006.1824.
[2] Lay T, Kanamori H, Ammon C J, et al. The Great Sumatra-Andaman Earthquake of 26 December 2004[J]. Science, 2005,
308(5725):1127-1133. DOI:10.1126/science.1112250.
[3] Pesterfield, L. L. Lanthanide and Actinide Chemistry (Inorganic Chemistry: A Textbook Series), 2nd Revised Edition (Cotton, Simon A.)
[J]. Journal of Chemical Education, 2006, 83(9):1295. DOI:10.1021/ed083p1295.
[4] Merrill R T, Mcelhinny M W, Mcfadden P L. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle[J]. Eos
Transactions American Geophysical Union, 1997, 50(9):70-70. DOI:10.1063/1.881919.
[5] Goodwin, D W. Optical Spectra of Transparent Rare Earth Compounds[J]. Physics Bulletin, 1979, 30(12):525-525. DOI:10.1088/0031-
9112/30/12/040.
[6] G. Ltjering, Williams J C, Gysler A. Microstructure and Mechanical Properties of Titanium Alloys[M]. 2009.
[7] Stixrude L, Lithgow-Bertelloni C. Geophysics of Chemical Heterogeneity in the Mantle[J]. Annual Review of Earth and Planetary Sciences, 2012. DOI:10.1146/annurev.earth.36.031207.124244.
[8] Navrotsky A. Physics and Chemistry of Earth Materials[J]. Physics & Chemistry of Earth Materials, 1994:431.
[9] Mingchun Chen, Zhendong Liu, Qingtian L, et al. Key techniques and methods for deep seismic data acquisition in crystalline rock
areas [J]. Chinese Journal of Geophysics, 2015, 58(12): 15. DOI:10.6038/cjg20151217.
[10] O'Handley R C. Modern Magnetic Materials: Principles and Applications[M]. Modern Magnetic Materials: Principles and Applications,
by Robert C. O'Handley, pp. 768. ISBN 0-471-15566-7. Wiley-VCH, November 1999. 2000.
[11] Karato S I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth[M]. Birkhuser-Verlag, 2008.
[12] Gongwen Wang, Shouting Zhang, Changhai Yan, et al. Resource-environment joint prediction and quantitative evaluation based on
geoscience big data mining and 3D/4D modeling in the Luanchuan ore concentration area [J]. Earth Science Frontiers, 2021, 28(3): 17.
DOI:10.13745/j.esf.sf.2021.1.1.
[13] Duffy, Thomas S.Synchrotron facilities and the study of the Earth's deep interior[J]. Reports on Progress in Physics, 2005, 68(8):1811.
DOI:10.1088/0034-4885/68/8/R03.
[14] Bercovici D.mantle dynamics 7.01 mantle dynamics past, present and future: an introduction and overview *[J]. 2019. DOI:10.1016/
b978-044452748-6/00113-9.
[15] Karki B B, Stixrude L, Wentzcovitch R M. High-pressure elastic properties of major materials of Earth's mantle from first principles[J].
Reviews of Geophysics, 2015, 39. DOI:10.1029/2000RG000088.
[16] Jackson I. Laboratory measurements of seismic wave dispersion and attenuation: Recent progress[J]. Geophysical Monograph Series,
2000, 117:265-289. DOI:10.1029/GM117p0265.
DOI: http://dx.doi.org/10.70711/frim.v3i10.7534
Refbacks
- There are currently no refbacks.