pisco_log
banner

The Pathogenicity & Clinical Relevance of Pseudomonas aeruginosa

Zihe Liu

Abstract


This article reviews the pathogenic mechanism, clinical relevance, and treatment challenges of Pseudomonas aeruginosa. Pseudomonas aeruginosa is a common opportunistic pathogen that can cause multiple organ infections in humans. Its pathogenicity mainly depends on virulence factors and the formation of biofi lms, among which biofi lms enhance bacterial resistance and persistence.

Keywords


Pseudomonas aeruginosa; Opportunistic pathogen; Exotoxin A; Pneumonia; Hospital-acquired infections; Drug resistance

Full Text:

PDF

Included Database


References


[1] Baykal, H., elik, D., lger, A.F., Vezir, S. and Gngr, M.. (2022). Clinical features, risk factors, and antimicrobial resistance of

pseudomonas putida isolates. Medicine, 101(48), p.e32145. doi:https://doi.org/10.1097/md.0000000000032145.

[2] Chevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M.G.J., Orange, N., Dufour, A. and Cornelis, P.

(2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews, [online] 41(5), pp.698

722. doi:https://doi.org/10.1093/femsre/fux020.

[3] ?Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines. 2022; 10(7):1100.

https://doi.org/10.3390/vaccines10071100

[4] Laborda, P., Hernando-Amado, S., Martnez, J.L. and Sanz-Garca, F. (2022). Antibiotic Resistance in Pseudomonas. Advances in Experimental Medicine and Biology, pp.117143. doi:https://doi.org/10.1007/978-3-031-08491-1_5.

[5] Li, M., Guo, N., Song, G., Huang, Y., Wang, L., Zhang, Y. and Wang, T. (2023). Type II ToxinAntitoxin Systems in Pseudomonas aeruginosa. Toxins, 15(2), p.164. doi:https://doi.org/10.3390/toxins15020164.

[6] Maurice, N.M., Bedi, B. and Sadikot, R.T. (2018). Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung

Infections. American Journal of Respiratory Cell and Molecular Biology, 58(4), pp.428439. doi:https://doi.org/10.1165/rcmb.2017-

0321tr.

[7] Merakou, C., Schaefers, M.M. and Priebe, G.P. (2018). Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surgical Infections, 19(8), pp.757768. doi:https://doi.org/10.1089/sur.2018.233.

[8] M.G.J., Orange, N., Dufour, A. and Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS

Microbiology Reviews, [online] 41(5), pp.698722. doi:https://doi.org/10.1093/femsre/fux020.

[9] Michelim, L., Medeiros, G. and Zavascki, A. (2014). Current Status of Pseudomonas aeruginosa Vaccine. Current Pharmaceutical Biotechnology, 14(11), pp.951959. doi:https://doi.org/10.2174/1389201014666131226143923.

[10] Mulcahy, L.R., Isabella, V.M. and Lewis, K. (2013). Pseudomonas aeruginosa Biofilms in Disease. Microbial Ecology, [online] 68(1),

pp.112. doi:https://doi.org/10.1007/s00248-013-0297-x.

[11] Pang, Z., Raudonis, R., Glick, B.R., Lin, T.-J. and Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, [online] 37(1), pp.177192. doi:https://doi.org/10.1016/

j.biotechadv.2018.11.013.

[12] Qin, S., Xiao, W., Zhou, C. et al. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with

host, technology advances and emerging therapeutics. Sig Transduct Target Ther 7, 199. https://doi.org/10.1038/s41392-022-01056-1

[13] Remans K, Vercammen K, Bodilis J et al.. Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa. Microbiology 2010;156:2597607.

[14] Rybtke, M., Hultqvist, L.D., Givskov, M. and Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. Journal of Molecular Biology, 427(23), pp.36283645. doi:https://doi.org/10.1016/

j.jmb.2015.08.016.

[15] Shmidov, E., Lebenthal-Loinger, I., Roth, S., Karako-Lampert, S., Zander, I., Shoshani, S., Danielli, A. and Banin, E. (2022). PrrT/A, a

Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation. Microbiology Spectrum, 10(3). doi:https://doi.org/10.1128/spectrum.01182-22.

[16] Shrestha, G.S., Vijay, A.K., Stapleton, F., Henriquez, F.L. and Carnt, N. (2021). Understanding clinical and immunological features associated with Pseudomonas and Staphylococcus keratitis. Contact Lens and Anterior Eye, 44(1), pp.313. doi:https://doi.org/10.1016/

j.clae.2020.11.014.

[17] Wenbin, C. The pathogenic factors and prevention of Pseudomonas aeruginosa infection in hospitals [J]. Chinese Journal of Practical

Internal Medicine, 1993, 13(10):2. DOI:CNKI:SUN:SYNK.0.1993-10-004.

[18] Wilson, B. and R. John Collier (1992). Diphtheria Toxin and Pseudomonas aeruginosa Exotoxin A: Active-Site Structure and Enzymic

Mechanism. pp.2741. doi:https://doi.org/10.1007/978-3-642-76966-5_2.

[19] Wu, D.C., Chan, W.W., Metelitsa, A.I., Fiorillo, L. and Lin, A.N. (2011). Pseudomonas Skin Infection. American Journal of Clinical

Dermatology, 12(3), pp.157169. doi:https://doi.org/10.2165/11539770-000000000-00000.

[20] Yu Tianliang Analysis of Drug Resistance of Pseudomonas aeruginosa to Six Antibiotics. Occupational Health and Injury 29.2 (2014): 2.




DOI: http://dx.doi.org/10.70711/pmr.v2i5.6712

Refbacks

  • There are currently no refbacks.