The Gut Microbiota-Derived Metabolites in Myasthenia gravis: Mechanisms and Therapeutic Opportunities via the "Metabolite-Immune-Neural Axis"
Abstract
microbiota (such as decreased ?-diversity, increased pro-inflammatory streptococci) drives the pathogenesis of MG through microbial metabolites (such as short-chain fatty acids, tryptophan derivatives). These metabolites regulate systemic inflammation, the balance of regulatory
T cells/Th17 cells, and intestinal barrier integrity by inhibiting histone deacetylases, activating the aryl hydrocarbon receptor/TLR2 pathway,
and promoting immune tolerance. Interventions targeting the microbiota (probiotics, fecal microbiota transplantation, high-fiber diet) can
increase the levels of short-chain fatty acids and inhibit autoimmune response. Future research is needed to deepen the study of the dynamic
interaction mechanism between the microbiota and the host, and to promote the clinical translation of targeted therapy.
Keywords
Full Text:
PDFReferences
[1] K. C. Dodd et al., Rituximab for myasthenia gravis. The Cochrane database of systematic reviews 7, Cd014574 (2025).
[2] F. Sciancalepore et al., Prevalence, Incidence, and Mortality of Myasthenia Gravis and Myasthenic Syndromes: A Systematic Review.
Neuroepidemiology, 1-14 (2024).
[3] R. J. Nowak et al., Phase 2 Trial of Rituximab in Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: The BeatMG Study. Neurology 98, e376-e389 (2022).
[4] Y. Tang, A. Fu, L. Wang, Q. Ge, Microbiota-dependent metabolites - New engine for T cell warriors. Gut microbes 17, 2523815 (2025).
[5] P. Zheng et al., Perturbed Microbial Ecology in Myasthenia Gravis: Evidence from the Gut Microbiome and Fecal Metabolome. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 6, 1901441 (2019).
[6] C. Huang et al., Oral Microbiota Profile in a Group of Anti-AChR Antibody-Positive Myasthenia Gravis Patients. Frontiers in neurology
13, 938360 (2022).
[7] D. Qiu et al., Altered Gut Microbiota in Myasthenia Gravis. Frontiers in microbiology 9, 2627 (2018).
[8] X. J. Ding et al., Altered gut microbiota and metabolites in untreated myasthenia gravis patients. Frontiers in neurology 14, 1248336
(2023).
[9] M. Zhao et al., Traditional Chinese medicine improves myasthenia gravis by regulating the symbiotic homeostasis of the intestinal
microbiota and host. Frontiers in microbiology 13, 1082565 (2022).
[10] A. Totzeck et al., Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Therapeutic advances
in neurological disorders 14, 17562864211035657 (2021).
[11] C. C. Chang, T. C. Liu, C. J. Lu, H. C. Chiu, W. N. Lin, Explainable machine learning model for identifying key gut microbes and metabolites biomarkers associated with myasthenia gravis. Computational and structural biotechnology journal 23, 1572-1583 (2024).
[12] T. Wu et al., Gut microbial profiles of patients with optic neuritis or myasthenia gravis. The Journal of international medical research
53, 3000605251314817 (2025).
[13] G. Moris et al., Fecal microbiota profile in a group of myasthenia gravis patients. Scientific reports 8, 14384 (2018).
[14] Y. Chen et al., Effect of Fufang Huangqi Decoction on the Gut Microbiota in Patients With Class I or II Myasthenia Gravis. Frontiers in
neurology 13, 785040 (2022).
[15] P. Liu et al., Metagenome-wide association study of gut microbiome revealed potential microbial marker set for diagnosis of pediatric
myasthenia gravis. BMC medicine 19, 159 (2021).
[16] B. Kapoor, M. Gulati, R. Gupta, R. K. Singla, Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmunity
reviews 22, 103313 (2023).
[17] D. Takahashi et al., Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory
T cells. EBioMedicine 58, 102913 (2020).
[18] E. F. de Zoeten, L. Wang, H. Sai, W. H. Dillmann, W. W. Hancock, Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138, 583-594 (2010).
[19] C. Tang et al., Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing T(reg) cells through modification of the intestinal microbiota. Nature immunology 19, 755-765 (2018).
[20] H. Schaffert et al., IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia
gravis. European journal of immunology 45, 1339-1347 (2015).
[21] G. Aguilo-Seara, Y. Xie, J. Sheehan, L. L. Kusner, H. J. Kaminski, Ablation of IL-17 expression moderates experimental autoimmune
myasthenia gravis disease severity. Cytokine 96, 279-285 (2017).
[22] J. Ji, H. Qu, Cross-regulatory Circuit Between AHR and Microbiota. Current drug metabolism 20, 4-8 (2019).
[23] K. M. Telesford et al., A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and
Treg function. Gut microbes 6, 234-242 (2015).
[24] T. Sano et al., An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell 163,
381-393 (2015).
[25] D. He et al., Serum cystatin C as a potential biomarker for generalized acetylcholine receptor antibody-positive myasthenia gravis.
Frontiers in immunology 16, 1578359 (2025).
[26] E. Rinaldi et al., Therapeutic Effect of Bifidobacterium Administration on Experimental Autoimmune Myasthenia Gravis in Lewis Rats.
Frontiers in immunology 10, 2949 (2019).
[27] M. B. Roberfroid, Fructo-oligosaccharide malabsorption: benefit for gastrointestinal functions. Current opinion in gastroenterology 16,
173-177 (2000).
[28] D. G. Maghini et al., Author Correction: Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nature biotechnology 42, 1313 (2024).
[29] J. Correale, R. Hohlfeld, S. E. Baranzini, The role of the gut microbiota in multiple sclerosis. Nature reviews. Neurology 18, 544-558
(2022).
[30] I. Leonardi et al., Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in
Ulcerative Colitis. Cell host & microbe 27, 823-829.e823 (2020).
[31] J. W. Wang et al., Fecal microbiota transplantation: Review and update. Journal of the Formosan Medical Association = Taiwan yi zhi
118 Suppl 1, S23-s31 (2019).
[32] J. Sun et al., Sodium butyrate alleviates R97-116 peptide-induced myasthenia gravis in mice by improving the gut microbiota and modulating immune response. Journal of inflammation (London, England) 20, 37 (2023).
[33] J. M. S. Sanchez, A. B. DePaula-Silva, J. E. Libbey, R. S. Fujinami, Role of diet in regulating the gut microbiota and multiple sclerosis.
Clinical immunology (Orlando, Fla.) 235, 108379 (2022).
[34] M. K. Boziki et al., Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain sciences 10, (2020).
[35] N. Wu et al., The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Frontiers in neurology 14,
1108738 (2023).
[36] N. Wilck et al., Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 551, 585-589 (2017).
[37] S. Ostadmohammadi, S. A. Nojoumi, A. Fateh, S. D. Siadat, F. Sotoodehnejadnematalahi, Interaction between Clostridium species and
microbiota to progress immune regulation. Acta microbiologica et immunologica Hungarica, (2022).
[38] D. Sheng et al., Evidence for genetic causal relationships between gut microbiome, metabolites, and myasthenia gravis: a bidirectional
Mendelian randomization study. Frontiers in immunology 14, 1279845 (2023).
DOI: http://dx.doi.org/10.70711/pmr.v2i7.7720
Refbacks
- There are currently no refbacks.