The MicrobiotaPyroptosisWound Healing Axis: An Emerging Paradigm for Chronic Wound Regulation
Abstract
challenge driven by sustained infection, uncontrolled inflammation, and defective tissue regeneration. Recent evidence highlights the critical role of the wound microbiota in modulating host immune responses and cell death pathways. Among them, pyroptosisa caspase-mediated inflammatory form of programmed cell deathhas emerged as a central determinant of the wound microenvironment. This review
integrates microbiological and immunological insights into a unifying framework termed the "microbiotapyroptosiswound healing axis."
We summarize how microbial dysbiosis promotes inflammasome activation and pyroptotic cell death, leading to sustained inflammation
and delayed repair. We also discuss therapeutic interventionsincluding pharmacological inhibitors, natural compounds, antimicrobial
peptides, probiotics, and bioactive biomaterialsthat target this axis to restore immune homeostasis and accelerate healing. Understanding the bidirectional regulation between microbial ecology and pyroptotic signaling may provide new translational strategies for chronic
wound management.
Keywords
Full Text:
PDFReferences
[1] Falanga, V. et al. Chronic wounds. 8, 50 (2022).
[2] Uberoi, A., McCready-Vangi, A. & Grice, E. A. J. N. R. M. The wound microbiota: microbial mechanisms of impaired wound healing
and infection. 22, 507-521 (2024).
[3] Wu, Y. et al. Cell pyroptosis in health and inflammatory diseases. 8, 191 (2022).
[4] Bergsbaken, T., Fink, S. L. & Cookson, B. T. J. N. r. m. Pyroptosis: host cell death and inflammation. 7, 99-109 (2009).
[5] Lee, H.-J. & Kim, M. J. I. j. o. m. s. Skin barrier function and the microbiome. 23, 13071 (2022).
[6] Rahim, K. et al. Bacterial contribution in chronicity of wounds. 73, 710-721 (2017).
[7] Serra, R. et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. 13, 605-613 (2015).
[8] Bjarnsholt, T. J. A. The role of bacterial biofilms in chronic infections. 121, 1-58 (2013).
[9] Verma, V. et al. ?-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in
THP-1 macrophages. 10, 12653 (2020).
[10] Zuo, K. et al. Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling. 18, 4219 (2022).
[11] Furuyama, N. & Sircili, M. P. J. B. R. I. Outer membrane vesicles (OMVs) produced by gram?negative bacteria: structure, functions,
biogenesis, and vaccine application. 2021, 1490732 (2021).
[12] Man, S. M., Karki, R. & Kanneganti, T. D. J. I. r. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. 277, 61-75 (2017).
[13] Guo, Q. et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2
inflammasomes are associated with autoimmune thyroiditis. 9, 1197 (2018).
[14] Dai, Z. et al. Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors. 14, 1178662 (2023).
[15] Zhao, J. et al. NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice. 23, 55 (2025).
[16] Chen, C. et al. Epigenetic regulation of macrophage polarization in wound healing. 11, tkac057 (2023).
[17] Gao, J. et al. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiationinduced lung inflammation and fibrosis. 10, 957 (2019).
[18] Keestra-Gounder, A. M. & Nagao, P. E. J. F. i. I. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and
regulation. 14, 1075834 (2023).
[19] Pugazhendhi, A. S., Wei, F., Hughes, M. & Coathup, M. in Musculoskeletal Infection 19-64 (Springer, 2022).
[20] Yang, K. et al. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic
stroke and the regulatory role of natural plant products. 15, 1250918 (2024).
[21] Martin, L., Van Meegern, A., Doemming, S. & Schuerholz, T. J. F. i. i. Antimicrobial peptides in human sepsis. 6, 404 (2015).
[22] Sahbafar, H., Ahmadvand, F. & Zarrinabadi, N. J. A. B. C. M., Design, Manufacturing. Development of nerve tissue replacement using
composites. 22, 297 (2025).
[23] Oh, C., Spears, T. J. & Aachoui, Y. J. I. R. Inflammasome-mediated pyroptosis in defense against pathogenic bacteria. 329, e13408 (2025).
[24] Samir, P., Malireddi, R. S., Kanneganti, T.-D. J. F. i. c. & microbiology, i. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). 10, 238 (2020).
[25] Vestby, L. K., Grnseth, T., Simm, R. & Nesse, L. L. J. A. Bacterial biofilm and its role in the pathogenesis of disease. 9, 59 (2020).
[26] Ye, X. et al. Pyroptosis inhibitors MCC950 and VX-765 mitigate myocardial injury by alleviating oxidative stress, inflammation, and
apoptosis in acute myocardial hypoxia. 438, 114061 (2024).
[27] Beale, D. J., Karpe, A. V., Ahmed, W. J. M. m. A. i. c., environmental, & microbiology, i. Beyond metabolomics: a review of multiomics-based approaches. 289-312 (2016).
[28] Xiang, Y., Zhang, M., Jiang, D., Su, Q. & Shi, J. J. F. i. i. The role of inflammation in autoimmune disease: a therapeutic target. 14,
1267091 (2023).
[29] Umekar, M. et al. Probiotics in Nanotechnology-Driven Wound Healing: From Mechanistic Insight to Clinical Promise. 17, 805 (2025).
[30] Ali, H. J. I. J. S. R. A. Artificial intelligence in multi-omics data integration: Advancing precision medicine, biomarker discovery and
genomic-driven disease interventions. 8, 1012-1030 (2023).
DOI: http://dx.doi.org/10.70711/pmr.v3i1.8067
Refbacks
- There are currently no refbacks.