pisco_log
banner

Blockchain-Based Encryption Scheme for Reviewer Identity in Transparent Peer Review

Junhao Tan, Lanjin Feng*

Abstract


This study presents a blockchain-based encryption scheme for reviewer identities in transparent peer review to address the challenge
of reviewer anonymity. By integrating Decentralized Identity (DID) and Ciphertext-Policy Attribute-Based Encryption (CP-ABE) technologies, this scheme overcomes the limitations of existing blockchain-based transparent peer review systems, including sufficient fine-grained
access control for reviewer identities, lack of attribute revocation support, and incompatibility in identity authentication. By integrating blockchain technology and DID identifiers, this scheme enhances computational efficiency, maintaining data integrity, and preventing malicious attribute tampering. Immutability and public verifiability of user identity authentication information are guaranteed by recording identity documents and encryption scheme parameters on a transparent blockchain. Compared to similar schemes, this scheme offers enhanced security
attribute support, reduced computational overhead, and superior suitability for reviewer identity anonymity in transparent peer review models.

Keywords


Blockchain; Decentralized identity; Transparent peer view; Secure sharing; CP-ABE

Full Text:

PDF

Included Database


References


[1] Yao, Z.; Li, M.; Xu, X. Current status and issues in process of open peer review. Acta Editol. 2022, 34, 142148. DOI:10.16811/

j.cnki.1001-4314.2022.02.005.

[2] Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings

of the 13th ACM Conference on Computer and Communications Security, Alexandria Virginia, USA, 30 October3 November 2006;

ACM; pp. 8998. DOI:10.1145/1180405.1180418.

[3] Cui, H.; Deng, R.H.; Li, Y.; Qin, B. Server-aided revocable attribute-based encryption. In Computer Security ESORICS 2016, Askoxylakis, I.; Ioannidis, S.; Katsikas, S.; Meadows, C., Eds.; Springer: Cham, 2016; pp. 570587. DOI:10.1007/978-3-319-45741-3_29.

[4] Yan, X.; Tang, Y. Attribute-based encryption scheme with efficient revocation in data outsourcing systems. J. Commun. 2015, 36, 92

100. DOI:10.11959/j.issn.1000-436x.2015254.

[5] Pan, N.; Zhu, Z.; Sun, L.; Zhao, Z. Ciphertext policy attribute based encryption scheme with revocation for cloud storage. Appl. Res.

Comput. 2014, 31, 14881490, 1515. DOI:10.3969/j.issn.1001-3695.2014.05.049.

[6] Fang, X.; Wang, X. Outsourced encryption and decryption CP-ABE scheme with user revocation. Comput. Eng. Appl. 2016, 42, 124

128, 132. DOI:10.3969/j.issn.1000-3428.2016.12.022.

[7] Zhusong, L.; Peng, J. An outsourced attribute-based encryption scheme supporting attribute revocation. Comput. Eng. Appl. 2017, 43,

109114. DOI:10.3969/j.issn.1000-3428.2017.10.019.

[8] Du, H.; Chen, J.; Lin, F.; Peng, C.; He, D. A lightweight blockchain-based public-key authenticated encryption with multi-keyword

search for cloud computing. Secur. Commun. Netw. 2022, 2022, 2309834. DOI:10.1155/2022/2309834.

[9] Esposito, C.; Ficco, M.; Gupta, B.B. Blockchain-based authentication and authorization for smart city applications. Inf. Process. Manag.

2021, 58, 102468. DOI:10.1016/j.ipm.2020.102468.

[10] Alzahrani, B. An information-centric networking based registry for decentralized identifiers and verifiable credentials. IEEE Access

2020, 8, 137198137208. DOI:10.1109/access.2020.3011656.

[11] Huh, S.; Shim, M.; Lee, J.; Woo, S.S.; Kim, H.; Lee, H. DID we miss anything?: Towards privacy-preserving decentralized ID architecture. IEEE Trans. Dependable Secure Comput. 2023, 20, 48814898. DOI:10.1109/tdsc.2023.3235951.

[12] Chase, M. Multi-authority attribute based encryption. In Theory of Cryptography. TCC 2007, Vadhan, S.P., Ed.; Springer: Berlin, Heidelberg, 2007; pp. 515534. DOI:10.1007/978-3-540-70936-7_28.

[13] Li, J.; Shi, Y.; Zhang, Y. A privacy preserving attribute-based encryption scheme with user revocation. J. Comput. Res. Dev. 2015, 52,

22812292. DOI:10.7544/issn1000-1239.2015.20150580.

[14] Zhong, H.; Cui, J.; Zhu, W.; Xu, Y. Efficient and verifiable muti-authority attribute based encryption scheme. J. Softw. 2018, 29, 2006

2017. DOI:10.13328/j.cnki.jos.005365.

[15] Li, X.; Zhang, X.; Gao, J.; Xiang, D. Blockchain data sharing scheme supporting attribute and proxy re-encryption. J. Xidian Univ. (Nat.

Sci.) 2022, 49, 116. DOI:10.19665/j.issn1001-2400.2022.01.001.

[16] Zhang, L.; Li, H. Multi-authority attribute-based encryption with efficient user revocation in cloud computing. Chin. J. Netw. Inf. Secur.

2016, 2, 6274. DOI:10.11959/j.issn.2096-109x.2016.00023.

[17] Dohare, I.; Singh, K.; Ahmadian, A.; Mohan, S.; Kumar Reddy M, P. Certificateless aggregated signcryption scheme (CLASS) for

cloud-fog centric industry 4.0. IEEE Trans. Industr. Inform. 2022, 18, 63496357. DOI:10.1109/tii.2022.3142306.




DOI: http://dx.doi.org/10.70711/wef.v2i7.5795

Refbacks

  • There are currently no refbacks.