Mechanisms and Research Progress of Ceramide in Liver Diseases
Abstract
and related diseases. Ceramide not only plays a key role in lipid metabolism but also has significant regulatory effects in insulin resistance,
apoptosis, and liver regeneration. This is particularly prominent in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and insulin
resistance. This article systematically reviews the mechanisms of ceramide in liver diseases and discusses its potential applications as a therapeutic target and biomarker.
Keywords
Full Text:
PDFReferences
[1] Summers S. A. (2020). Ceramides: Nutrient Signals that Drive Hepatosteatosis. Journal of lipid and atherosclerosis, 9(1), 5065. https://
doi.org/10.12997/jla.2020.9.1.50
[2] Mangesh Pagadala, Takhar Kasumov, Arthur J. McCullough, Nizar N. Zein, & John P. Kirwan (2012). Role of ceramides in nonalcoholic fatty liver disease. Trends in Endocrinology and Metabolism, 23 (8), 365-371. https://doi.org/10.1016/j.tem.2012.04.005
[3] Hajduch, E., Lachkar, F., Ferr, P., & Foufelle, F. (2021). Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. Journal of clinical
medicine, 10(4), 792. https://doi.org/10.3390/jcm10040792
[4] Mariah Weber-Stout, Scott A. Summers, & William L. Holland (2023). Writing and erasing ceramides to alter liver disease. Nature Metabolism, 5 (5), 727-729. https://doi.org/10.1038/s42255-023-00809-8
[5] Pagadala, M., Kasumov, T., McCullough, A. J., Zein, N. N., & Kirwan, J. P. (2012). Role of ceramides in nonalcoholic fatty liver disease. Trends in endocrinology and metabolism: TEM, 23(8), 365371. https://doi.org/10.1016/j.tem.2012.04.005
[6] Zhu, C., Huai, Q., Zhang, X., Dai, H., Li, X., & Wang, H. (2023). Insights into the roles and pathomechanisms of ceramide and
sphigosine-1-phosphate in nonalcoholic fatty liver disease. International journal of biological sciences, 19(1), 311330. https://doi.
org/10.7150/ijbs.78525
[7] Xiaodong Yu, & Jiong-Wei Wang (2022). Ceramide de novo synthesis in non-alcoholic fatty liver disease: Pathogenic mechanisms and
therapeutic perspectives. Biochemical Pharmacology, 202 (0), 115157-115157. https://doi.org/10.1016/j.bcp.2022.115157
[8] Maria Apostolopoulou, Ruth Gordillo, Sofiya Gancheva, Klaus Straburger, Christian Herder, Irne Esposito, Matthias Schlensak,
Philipp E. Scherer, & Michael Roden (2020). Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty
liver disease in humans. BMJ Open Diabetes Research & Care, 8 (2), e001860-e001860. https://doi.org/10.1136/bmjdrc-2020-001860
[9] Kathryn A McGurk, Bernard Keavney, & Anna Nicolaou (2021). Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis, 327 (0), 18-30. https://doi.org/10.1016/j.atherosclerosis.2021.04.021
[10] Quinville, B. M., Deschenes, N. M., Ryckman, A. E., & Walia, J. S. (2021). A Comprehensive Review: Sphingolipid Metabolism
and Implications of Disruption in Sphingolipid Homeostasis. International journal of molecular sciences, 22(11), 5793. https://doi.
org/10.3390/ijms22115793
[11] Sarah M. Turpin-Nolan, & Jens C. Brning (2020). The role of ceramides in metabolic disorders: when size and localization matters.
Nature Reviews Endocrinology, 16 (4), 224-233. https://doi.org/10.1038/s41574-020-0320-5
[12] Canals, D., Salamone, S., & Hannun, Y. A. (2018). Visualizing bioactive ceramides. Chemistry and physics of lipids, 216, 142151. https://doi.org/10.1016/j.chemphyslip.2018.09.013
[13] Skcel, J., Slusher, B. S., & Tsukamoto, T. (2021). Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of
the Sphingolipid Network. Journal of medicinal chemistry, 64(1), 279297. https://doi.org/10.1021/acs.jmedchem.0c01664
[14] Mandal, N., Grambergs, R., Mondal, K., Basu, S. K., Tahia, F., & Dagogo-Jack, S. (2021). Role of ceramides in the pathogenesis of diabetes mellitus and its complications. Journal of diabetes and its complications, 35(2), 107734. https://doi.org/10.1016/
j.jdiacomp.2020.107734
[15] Annelise M Poss, & Scott A. Summers (2020). Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides
in NAFLD. Frontiers in Endocrinology, 11 (0), 0-0. https://doi.org/10.3389/fendo.2020.00505
[16] Denimal, D., Bland-Bonenfant, S., Pais-de-Barros, J. P., Rouland, A., Bouillet, B., Duvillard, L., Vergs, B., & Petit, J. M. (2023).
Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type
2 diabetes. Cardiovascular diabetology, 22(1), 310. https://doi.org/10.1186/s12933-023-02049-2
[17] Weber-Stout, M., Summers, S. A., & Holland, W. L. (2023). Writing and erasing ceramides to alter liver disease. Nature metabolism,
5(5), 727729. https://doi.org/10.1038/s42255-023-00809-8
[18] Michael Mah, Mark A. Febbraio, & Sarah M. Turpin-Nolan (2021). Circulating Ceramides- Are Origins Important for Sphingolipid Biomarkers and Treatments? Frontiers in Endocrinology, 12 (0), 0-0. https://doi.org/10.3389/fendo.2021.684448
[19] Jia, Z., Liu, L., Liu, J., Fang, C., Pan, M., Zhang, J., Xiao, H. (2022). Assessing potential liver injury induced by Polygonum multiflorum using potential biomarkers via targeted sphingolipidomics. Pharmaceutical Biology, 60(1), 15781590. https://doi.org/10.1080/138
80209.2022.2099908
[20] Jorge Simn, Alberto Ouro, Lolia Ala-Ibanibo, Natalia Presa, Teresa C. Delgado, & Maria Luz Martnez-Chantar (2019). Sphingolipids
in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. International Journal of Molecular Sciences,
21 (1), 40-40. https://doi.org/10.3390/ijms21010040
[21] Kakazu, E., Mauer, A. S., Yin, M., & Malhi, H. (2016). Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles
in an IRE1?-dependent manner. Journal of lipid research, 57(2), 233245. https://doi.org/10.1194/jlr.M063412
[22] Blanca DelgadoCoello, Marco A. Briones-Orta, Marina Mac?as-Silva, & Jaime Mas-Oliva (2011). Cholesterol: recapitulation of its active role during liver regeneration. Liver International, 31 (9), 1271-1284. https://doi.org/10.1111/j.1478-3231.2011.02542.x
[23] Chaurasia, B., & Summers, S. A. (2021). Ceramides in Metabolism: Key Lipotoxic Players. Annual review of physiology, 83, 303330.
https://doi.org/10.1146/annurev-physiol-031620-093815
[24] Gaggini, M., Ndreu, R., Michelucci, E., Rocchiccioli, S., & Vassalle, C. (2022). Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. International journal of molecular sciences, 23(5), 2719. https://doi.org/10.3390/ijms23052719
[25] Duarte, C., Akkaoui, J., Yamada, C., Ho, A., Mao, C., & Movila, A. (2020). Elusive Roles of the Different Ceramidases in Human
Health, Pathophysiology, and Tissue Regeneration. Cells, 9(6), 1379. https://doi.org/10.3390/cells9061379
[26] Senchenkov, A., Litvak, D. A., & Cabot, M. C. (2001). Targeting ceramide metabolism--a strategy for overcoming drug resistance. Journal of the National Cancer Institute, 93(5), 347357. https://doi.org/10.1093/jnci/93.5.347
[27] Alhaji H. Janneh, & Besim ?retmen (2022). Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers, 14 (9), 2183-2183. https://doi.org/10.3390/cancers14092183
[28] Javad Alizadeh, Simone C. da Silva Rosa, Xiaohui Weng, Joadi Jacobs, Shahrokh Lorzadeh, Amir Ravandi, Rui Vitorino, Stevan Pecic,
Aleksandra ivkovi?, Holger Stark, Shahla Shojaei, & Saeid Ghavami (2023). Ceramides and ceramide synthases in cancer: Focus on
apoptosis and autophagy. European Journal of Cell Biology, 102 (3), 151337-151337. https://doi.org/10.1016/j.ejcb.2023.151337
[29] Ofori, E. K., Buabeng, A., Amanquah, S. D., Danquah, K. O., Amponsah, S. K., Dziedzorm, W., Dogodzi, F. K., Adusu-Donkor, L. X.,
Bernard, S. K., & Asare-Anane, H. (2023). Effect of circulating ceramides on adiposity and insulin resistance in patients with type 2 diabetes: An observational cross-sectional study. Endocrinology, diabetes & metabolism, 6(3), e418. https://doi.org/10.1002/edm2.418
[30] Grski J. (2012). Ceramide and insulin resistance: how should the issue be approached? Diabetes, 61(12), 30813083. https://doi.
org/10.2337/db12-1157
DOI: http://dx.doi.org/10.70711/mhr.v2i4.5498
Refbacks
- There are currently no refbacks.