Characterization of Heat Kernel Lower Bounds for Symmetric Jump Processes
Abstract
Keywords
Full Text:
PDFReferences
[1]Chen Z Q,Kumagai T,Heat kernel estimates for stable-like processes on d-sets.Stoch.Proc.Their Appl.,2003,108:2762.
[2]Chen Z Q,Kumagai T,Heat kernel estimates for jump processes of mixed types on metric measure spaces.Probab.Theory Relat.Fields,2008,2008:277317.
[3]Chen Z Q,Kumagai T,Wang J.Stability of heat kernel estimates for symmetric non-local Dirichlet forms.Mem.Amer.Math.Soc.,2021,no.271.
[4]Chen Z Q,Kumagai T,Wang J.Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms.J.Eur.Math.Soc.,2021,22:37473803.
[5]Chen Z Q,Kumagai T,Wang J.Elliptic Harnack inequalities for symmetric non-local Dirichlet forms.J.Math.Pures Appl.,2019,9:142.
[6]Chen Z Q,Kumagai T,Wang J.Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms.Adv.Math.2020,374:no.107269.
[7]Felsinger M,Kassmann M.Local regularity for parabolic nonlocal operators.Communications in Partial differential Equations,2013,38:15391573.
[8]Kassmann M,Mimica A.Intrinsic scaling properties for nonlocal operators.Journal of the European Mathematical Society,2017,19:9831011.
[9]Thierry C.Off -diagonal heat kernel lower bounds without Poincar.J.London Math.Soc.,2003,68:795816.
DOI: http://dx.doi.org/10.18686/cle.v2i2.3826
Refbacks
- There are currently no refbacks.